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1. .Introduction

There are significant differences between the situation of players
undertaking to play a single game, and players who know that they will play
the same game repeatedly in the future. Strategy in the first case is a
single play; in the second, it is a sequence of rules, each one of which
pertains to the outcomes preceding it. The preferences of the participants
are determined partly by temporal considerations. The participants may adopt
risky strategies, 'protected' by threats of retribution in the future.-

Analysis of a finite sequence of identical games shows that this
model is inadequate for examining the idea of repeated games. If the number
of games is finite and known initially, the players will treat the last game
as if-it were-a single game. Thus the-threats implicit in the game before
last are proven to be false threats. Therefore the game before last will be
treated as a single game, and so on. Thus the situation we wish to describe
is not expressed by such a sequence. (For a detailed analysis, see [9].)

In order to avoid '"end-points'" in the model, we define a supergame.
A supergame is an infinite sequence of identical games, together with the

players' evaluation relations. (That is their preference orders on utility

¢

* This paper was written as a Master's Thesis at the Hebrew University of
Jerusalem, under the supervision of Professor B. Peleg. I wish to thank
Professor Peleg for his advice and guidance.



sequences.) Obviously the assumption of an infipite planning horizon is
unrealistic, but it is an approximation to the situation we wish to describe.

The literature deals mainly with comparison of equilibrium concepts
in supergames and single games. (See Aumann [1] and [2]. The results are
derived more simply in [5]; see also [3] and [4].) Other papers emphasize
the uses of the concept of supergames in economics ([7], [8]).

In most of the papers, it was assumed that the participants
evaluate the utility flows according to the criterion of the limit of the means
of the flows. (But see [7].) The drawback of this evaluation relation is
that it ignores any finite time interval.

One-of the aims of this paper is to extend the-discussion to
supergames with different evaluation relations. In particular, to supergames
with evaluation relations determined according to the "overtaking criterion'.
(The sequence {ai}:=1 is preferred to the sequence {bi}:=1 if
n

0 < lim a. - b. . See §6.)
—— i i

i=1

The formal model, described in §2, is taken from Roth.l/ The single
game is given in strategic form (see [5]). This representation permits
discussion or matrix games, when the set of strategies is the set of mixed

strategies. In this treatment, the following. simplifying. assumptions are made:
i)  Every participant has complete information about the others' plans.

ii) The evaluation of strategies in supergame is a function of the evaluation

of the outcomes of the individual games.

iii) The players do not randomize on the strategies.

1/

= I wish to thank Professor A.E. Roth for permitting me to use the model
described in [10].



A (Nash) equilibrium is an n-tuple of supergame strategies (n players),
~ such that no player may alone deviate profitably from his-strategy. A
stétionary strategy is a supergame strategy which, if adhered to by all players,
will produce identical outcomes for every game played. In §3, the stationary
equilibrium points will be characterized by a '"twesstage' finite game in which
the time element is reduced to ''present" and "future'.

The "power'" of the threats make possible many equilibrium points. We
can add some other reasonable requirements. An equilibrium point will be called
perfect if after any possible 'history', the strategies planned are an
equilibrium point. In other words no player ever has a motivation to change his
strategy. This will be treated in §4.

A complete characterization is obtained for supergames with the limit
of means evaluation relation. A partial characterization is obtained for
supergames with evaluation according to the overtaking criterion. The
requirement--of perfection does not alter the outcomes of stationary equilibria
in the first case, and only marginally in the second.

A strong equilibrium is an n-tuple of strategies where no coalition
of players can alter their strategies to bring profit to all members of the
coalition.

In: §5, the concept of desirable payoff:is defined for a single game.

The- strong perfect equilibrium points are .characterized in a
supergame with evaluation relations determined by the limit of means criterion.
An example is given of such a game with a streng perfect equilibrium, but in
which, when the evaluafion relations are determined by the overtaking criterion,

none exist.



2. The Model

i) The single game G dis a game in strategic form

G= <{s.}" At >
{ i'4=1 "’ {"1 i=1

The set of players is N = {1,...,n} . For each i €N, the set of strategies

n
of i is Si 5 Si is assumed non-empty and compact. S =,H1 Si is the set
1=

of outcomes. - An element in S will be called an outcome of G . The preference
relations of the player i are defined by utility function w, : Ss+>R (R-
the reals), which are continuous in the product topology.

Given ¢ € S , -a payoff vector is the n-tuple (o) = <ﬂ1(0),...,ﬂn(0)) .
For convenience we will denote the n-1-tuple <61""’oi—l’gi+1""’°n> by
c_i , and the n-tuple o by < c'i,ci> . ¢ will be called a (Nash)

equilibrium if for all i and for all 55 € Si s
-1 <
ni(o ,si) z ni(c)

If the set of strategies is finite, and it is possible-to .adopt mixed strategies
we can identify Si with the set of mixed strategies, and m with the
expected payoff of i .. Examples in-a similar- context may be found in [7] and

[8l.

ii) The-supergame, G is < G,-<1,..., <Tl> where G is a single game and
the < ; are evaluation relations on real number sequences; more exactly, < i
is a binary relation on wi(S)N 2 where= ni(S) is the range of m, on S .
<j_ will be transitive, anti-symmetric, but not necessarily a total order.

i+

-~

Y,

Let A be a set. AN -is the set of sequences of elements in A .



The set of outcomes at time t , S(t) , is S . A strategy for i

o

e=1 where fi(l) € S(1) , andfor t 2z 2,

in G is a set {fi(t)}

t-1
fi(t) : _H11S(j) - Si' Thus a supergame strategy is a choice of strategies at
J= .

every stage, possibly dependent on the outcomes preceding the choice. We
assume all players know all the choices made by all the players in the past.
_The set of strategies of i will be denoted by Fi . F is the set

n
of n-tuples of strategies; F = _Hl Fi .
i=

Given f € F , the outcome at time lt~'will be denoted by o(f)(t) ,
and is defined inductively by
o() (1) = (£,(1),...,E (1))

o(£)(t) = (..., £ () (0(H)(1),...,0(f)(t-1)),...)

We will define an evaluation relation 2; on F , induced by '<i , as
follows:

For all f,g € F , f-Z; g if and only if

{r (@(E) (N <4 I (0@ N,

.

Given £ € F, we will denote (f £ £) by £1, and f

1""’fi-1’ ie170

by (f_l,fi) . f€F is a (Nash) equilibrium in the supergame G~ if for
. ‘ -1

all i, and for all h €F, , fvla (£77,h))

. f\E.F is stationary if there exists o € S such that for all t ,
o) (t) = ¢ f If f€F is stat}onary\we will denote the corresponding o
by gtf)‘. yote‘that, in contrast toaaacépted definitions, the stationary
strategies,prodﬁce constant outcomes (as in [lqj).

Let. us examine various evaluation relations. If A 1is.a bounded

set of real numbers, the following are-evaluation relations on AN



i) Limit of means evaluation relation, defined by

ii) Overtaking criterion evaluation relation, defined by

n~Ms

x<y iff 1i

— i

1yi-xi>0.

iii) The evaluation relation with discount parameter 0 < § < 1 , defined by

. *® *® t
XLy iff E16xt<t§16yt'

iv) The evaluation relation determined solely by the present:
x <y iff X<y -
We do not assume yet that the players are characterized by a single evaluation

relation. -We will merely assume that the ‘evaluation relations: are reasonable,

that is, satisfy:

(A.1) If for all t , Ye = Yo o and X, = Xy o then
Xg< Y implies x<Ly .
< 1/
(A.2) If z<x, and x 2y , then z<Ly . =~
(A.3) If there exists a € A such that

(a,xl,xz,...) < (a,yl,yz,...) , then x<£Lvy.

All four evaluation relations described satisfy these conditions.

Yy If x,y € AN , we will write " x £y " for "for all t €N , Xy < Ye "o,



3. Characterization of Stationary Equilibria

This section has two aims. The- first, to characterize the stationary
equilibria, using the equilibria of a "'finite" two-stage game, derived from G .
We will denote this game G2 ; it will be a twofold repetition of G . A
strategy in GZ‘ contains decisions about the 'present', the first game, and
the ''future", the second game. The latter decision depends on the outcome of
the former. ~

The second aim is to examine the verisimilitude of the formal model
in representing human behavior characterized by the- expectation which the
players have that after every game they will play further games. We will do
this at least as far as characterization of stationary equilibria is
concerned.

We will now define the-derived game, G2 . A strategy for a player
i in 62 is a pair <fi(1),fi(2)> where fi(l) € Si , and
fi(Zf‘: S(1) » Si . We will denote the strategies of i by Fi , and write

FP- 1 F°.
16N i

We define a partial order <« i on ni(S) x wi(S) as follows:
(b,,b,) =D 2 a= (a,,a,) iff
100 = Py @ = (a,2) 1
1) b, <a

2) (bl,bz,bz,bz,...)< i (al,az,az,az,...) s
where < i is the evaluation relation of a player 1 in G .

The outcome of G2 , Wwhere players adopt strategies f € F2 s, wWe

define inductively by:



S(E) (1) = (£,(1),..,E (1))

o(£)(2) (fl(ﬂ(f)(l)}*g*-‘fn(ﬂ(f)(1)))-

f € F2 will be called stationary if there exists ¢ € S such that

a(f)(1) = o(£)(2) =0 . Such a o will be denoted by a(f) .

f € F2 will be called an equilibrium in 62 if there does not exist i

and 'gi € Fi such that

(m, (0 () (t)))12:=1 4?1 ("i(c(f_i’gi) (t))j§=l

Examples:

1) If < 1is the limit of means evaluation relation, the relation < 2

induced by < in G2 is:

b<"a iff b1 < a; and 1i

a, + (n—l)a2 b1 + (n-l)b2 -
n n

iff b, < a and b, < a (a,b € Rz)
2) If <L is the overtaking evaluation relation,
: ) <
b <%a iff b, < ay and b2 -2, .
3) If < is the evalution relation with discount parameter 0 <6 <1 ,

then

b<“a iff b1<a and b, +

Remark: For a supergame G .= <G,<1,..., <5 where for all
1 21i2n the evaluation relations are reasonable, and where there exists an

equilibrium ¢ in G, define f € F by: "For all i and for all t ,



fi(t] =0, . " Clearly f is a stationary equilibrium in G (even perfect;
see the definition in §4), satisfying 6(f) = o . Thus in a supergame where
the individual game has an equilibrium, we are guaranteed the existence of an
equilibrium.

Proposition 3.1: Let G = <G,‘<1..., <n> be a supergame where the
Z‘i are reasonable- evaluation relations. If there exists g € F-2 s a
statienary equilibrium in G2 s, the derived gane, such that- a(g) = ¢ then
there exists f € F, f a stationary equilibrium in el , such that

G(f) =0 .

Proof: Given s € S, let ri(s) € Si satisfy

i

)

-1y -
wi(ri(s), s ) = tggéi wi(ti, s

(Si is compact and T is continuous).
We will first show that there exists a "punishing strategy" Yl €S
satisfying

(7, (0,7, (0)) A2 (m; (r, ((1)) 8 (1)), (r; (vH)¥] D)

Let h, € Fi , satisfying
hy (1) = 7, (g(1))
hy(2) (27N (1), by (1) = 7, (82 (g7 (D), b, (1))
Assuming there is-no such Yi we have
(o™, )N > 2 (n,(0),m,0)) = (n, @ N, |

contradicting the fact that g is a G2 equilibrium. Let Yl €S be

"punishing strategies'. We may assume that if wi(ri(o), u'l) < ﬂi(G] , then

i
Y =0 .
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Define fi € Fi for i € N as follows:

fi(l) =0, ;
(Y
if there exists T St -1
such that- s{1) =...= s(T+1) = ¢
£, (£)(s(1)...5(t-1)) = { and s 3(m) = ¢
d (T) # o,
an sJ( ) cJ
Ch otherwise .

Then 6(f) = o . f isa G equilibrium, since for all hi € Fi
-iy < > -i
1) If wi(ri(a), o N wi(o) , then wi(c) 2 ni(c(g B hi)(t)) for all t ,

and thus according to (A.2) and the irreflexivity following from the

asymmetry, f 72i (f'i, h.)

i
2) If m (o) < m;(x;(0), ol ., let t, be the minimum satisfying

1/

fi(to)(c,c,...,c) * oy whenever =~

-i L ©
{n; (0(£75, ) (ENIg > (n;(0))
~
Repeated application of (A.3) yields

SACCRR RICIDER PO

But wi(ri(a), ol 2 wi(o(f_l, hi){§b)) and for t >t ,

i._

s 1 :
), Yt ) 2 e, Ry ()

Y

We use the notation: if a,b € w(S) , a-= (a,a,a...) , and (a{B) = (a,b,b,b,...
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Thus applying (A.2)

. . s-1
(ry(r;(0), 0™, M (r (v, Y Ny (ry(0))
’ ~ ~

contradicting the choice of Yl .

Proposition 3.2: Let G = <G, £ 1000 <n> and £ i reasonable
evaluation relations. If f € F 1is a stationary equilibrium in G , and
a(f) = ¢ , then there exists a G2 stationary equilibrium, g € F2 R

such that a(g) = o .

Proof: Suppose not. Then there is an i and T € Si satisfying:
D o ) > ()
2) For all s € S, there are ti € Si such that

(i 67 T, My, ST > ()
—~ ~

. -i : -i
Thus, applying (A.2), (ﬂi(o s ri), 212 ﬁax ni(ti, s )7~ 3 ("15?))
—

Define hi , a strategy in G , by
hi(l) = s
hi(t) (s(1)...s(t-1)) = ri(f(t) (s(1)...s(t-1))).

Applying (A.2), we obtain

(n, G, RO, > {3 ()

in contradiction to f being an equilibrium.

Definition: s € S is a weakly forced outcome in G if, for all

i, there is r € S such that for all t, €S, , = (r 5, t.) < m. (s)
1 1 1 1 1
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Thus in a weakly forced outcome each player's payoff is at least as large as
the amount the other players can force on him, that is at least
-i

min max w,(r T,t.)
€S ti€Sy * 1

Definition: s € S is a strongly forced outcome in G if for all
i, and for all t. €S, , ni(s'i,ti) < m.(s) , or there exists r €S
such that for all t, €5, , ni(r'i,ti) <7 ()

Thus a strongly forced outcome is one where any one player making a

"profitable'" deviation may have a loss forced on him by the other players;

that is if max wi(ti,s—l) > wi(s) , then min max n.(r_l,ti) < m (s)
. €G.: i

ti€5; Tr€S tj€S; T
Example:
Let Si be the set of mixed strategies of i, i= 71,2 . Ina
matrix game with payoff matrix
2,2 0,3
3,0 1,1

T is the expected payoff of i .

Strongly forced outcomes Weakly forced outcomes
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Proposition 3.3: 1) If < i is tﬁé;limit of ‘means evaluation
relation in G , the stationary outcomes of equilibria are the weakly forced
outcomes.

2) If < i is the overtaking evaluation relation
the stationary outcomes of equilibria are the strongly forced outcomes.

3) If < i is the evaluation relation according
to the present, then the stationary outcomes of equilibria are the Nash
equilibria.

Proof: 3) is immediate. 2) is similar to 1), which will now be
proved.

There exists g € F, a stationary G equilibrium, such that

o , 1iff there exists f € F2 a stationary G2 equilibrium such that

2
i

é(g)
6(f) = ¢ ; and this holds iff for all h, €F

2 -1 2
(0,0) =5 (othy, £ N7,
i.e. iff for all i , either wi(ri(c),e-i) < ni(o) or

oot m 0,07 v - D ey o
mr(),y ) = 1d

—_— n

g

= "i(c) 5

and this will hold iff for all i , there exists Yl € S such that

. -1
m 0. ) ) .

Proposition 3.4: Let 6” = <G, ‘<L,...,-<n> be a supergame with
reasonable evaluation relations. A necessary condition for f € F to be a
stationary equilibrium is that G(f) is a weakly forced outcome.

Proof: By proposition 3.2, there exists g € F, a stationary
equilibrium in G’ such that a(g) = o(f) . If G&(f) is not weakly forced,

there exists i such that for all s €S,
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-i o
'lTi(ri(S),S ) > "i(U(f)) M
S is compact. Thus there exists € > 0 such that
-i "
mi(ri(s),s ) > M (a(£)) + e .

Define h, € F? by:
i i

h; (1) = r, (3(£)

"

hy(2) = 7, () (6,7, (B(6)))

Applying (A.1), we obtain:
(r (0™ h) ()7, >2 (n, (6(5),m; (B(£)))

in contradiction to g being a G2 equilibrium.

Remark: Let us return to the question raised at the beginning of
this section. In G2 , each player considers whether to deviate from the
stationary norm, taking in account future plays. The decision is far simpler
than .in supergame, where the relevant factors range over an infinite future.
For example, a player deviating at any one time only if he will derive certain
profit in the forseable future, behaves .according to-the evaluation relation
induced in G2 by the limit of meahs . felation. A player deviating only if
he will not ''lose" in the future, behaves according to the relation in G2
induced by the overtaking criterion, and if there exists 0 < e such that a

player will deviate in the future iff the difference between his present

' a.-b
171

b3,

then the evaluation relation in G2 corresponding to this behavior is that

prafit and future loss exceeds € , ( >e®a +ea, > b1 + eb2> then

1

induced by the evaluation relation with discount parameter § = 1 i T -
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Thus at least as far as the equilibria are concerned, the conclusions arrived
at in supergame and G2 are identical. It appears that the relation induced
“in G2 by the overtaking criterion evaluation relation is more acceptable

intuitively than that induced by the limit of means; pointing to the

superiority- of the former.

Remark: -As has previously been mentioned, by identifying mixed
strategies and the expected payoff with Si and LI matrix games are
covered by the theory so far.

In this model, a strategy f € F is preferred to g € F, if i 's
sequence of utility contents "induced" by f is < i T better than that
"induced" by g . Alternative definitions are possible, as in [1]. Thus a
possible definition exending the concept of equilibrium is:

f € F is preferred to g € F as far as i is concerned if his
payoff sequence resulting from adoption of f is prefereable with probability 1
to the expectation sequence resulting from adoption of g . (Compare with [5]).

In the following example, both plaYers adopt an evaluation relation

according to the overtaking criterion. The payoffs matrix is:

1,0 1,0
2,0 0,2
0,2 2,0

We will see that there is an equilibrium point in the single game which is a
stationary outcome of an equilibrium point-according to our definition, but
not according to the second definition. The strategy (0,1/2,1/2) for the
row player and (1/2,1/2) for the column player is an equilibrium, and the

outcome is strongly-forced (neither player can profitably deviate). Thus it
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is a stationary outcome of an equilibrium in supergame, according to our

definition of equilibrium.

However, if for every f € F satisfying S(f) = ((0,1/2,1/2),(1,0)) R

the row player deviates by the following rule:
i) He plays (0,1/2,1/2) wuntil time T when the total payoff he has
accumulated is T + 1 . ‘
ii) He then deviates and plays (1,0,0) .

The probability of such a T occuring, and hence the Qrobability of
deviating, is 1 . Since the row player's evaluation is according to the
overtaking criterien, his payoff sequence will be preferable with probability

-1 to that obtained had he not-deviated.

4. Perfect Equilibria

The definition of equilibrium as in §2 was shown to be too general
in §3. The set of equilibria is too large, and it is natural to introduce
furfher reasonable restrictions to obtain a stronger characterization.

One possible requirement is that a deviation will prove unprofitable
to a player at all stages of the game, and not only at the beginning; thus no

circumstances will induce him to change his original strategy.

‘Definition: f € F 1is a perfect equilibrium peint if for all
r(l),...,r(T) € S,
fi(t)(s(l),...,s(t—l)) = fi(t+T)(r(1),...,r(T),s(l),...,s(t-l))
satisfies " £ is an equilibrium in supergame'.

Not only is it unprofitable for one player to alter his strategy,

but also no players can perform manipulative manoeuvres since after every
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"history'", all players prefer not to deviate.

The following proposition characterizes the stationary perfect
equilibrium in a supergame with evaluation relations determined by the limit
of ' means = criterion. A similar result was discovered independently, by

Aumann and Shapley.

Proposition 4.1: If o € S, there is a perfect stationary
equilibrium f € F such that &(f) = 0 , iff o is a weakly forced
outcome.

Proof: Necessity follows from 3.3

Let o €-S be weakly forced outcome.

Let 71: be- strategies- satisfying
max w.(y?i t.) S 7. (o)
it'i i i

tiESi

(Yl will be the strategy for punishing player i ) . Define

fi[t+1)[s(1),...,s(t)) and "P[s(1),...,s(t)) inductively as follows:
(P(s(1),...,s(t)) will denote the players - in practice a single

player - deserving punishmen§ after s(1),...,s(t) ).

P(g) =9 .

fi(l) =0,

-i

(131 18 s7hey = b, pesqD),...,s(t-193= (i)

t
T (s(k)
and k_=1_._1_.__ 211',(0-) +_1
t * %

P(s(1),...,s(t)) = J {i} if P(s(l),...fs(t—l)) =0, s_i(t) = o_i but

t
room. (s(k))
=] i > “i(c) . 1

s;(t) o, , and K
t vt

# otherwise
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yi if j+#i, and P(s(1),...,s(t)) = (j}
fi(t+1)(5(1),---,5(t)) =

9y otherwise.

Let r(1),...,r(T) € S ; denote
fi(lJ = £, (T+1) (x(1),...,7(T))

fi(t](s(l),...,s(t-l)) = £, (t+T) (r(1),...,7(T),5(1),...,5(t-1))

We will show that f is an equilibrium.

Lemma 1: There exists T, such that for all t 2 T1 ,

o(B)(t) = o .
Proof: -If P(r(l),...,r(T)) =P, then o(F)(t) =0 for all t 21 .

If P(r(1),...,r(T)) = {j} , then j 's mean gain is

T j T
(Fy Ty @) ot (y7) k1 “j(r(k)) + (o)

T+ t T+t

for sufficiently large t .

Let h, € F. .
i i

Lemma 2: For all t, there is t 2 to such that

t -i
k§1 m;(0(f 7,h.) (k) i
— < m (o) + ==
t i vt
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Proof: It is sufficient to consider the case to 2 T1 , where T

1
is given by lemma 1; note also that t 2 T, implies P(s(1),...,s(t)) < {i} .
If for all .t 2 T, , i does not deserve punishment after {c(f—l,hi)(k)}]tF1 ,

then c(f_l,hi) =o forall t, <k, and

HEERI ) to mEE L)) (tgn) .
=z + Z wi(c) + —
1 t k=1 t t V/t

[N Rad

k

for large enough t .
If there exists to < t1 , such that i deserves punishment after
. t
-i 1
{o(f ‘hi)(k)}k=1 , then

- t. i - (t-
wi(c(? ,hi)(k)) < zl (ot Shy) () +(t )7 () - m. (o) + 2
1 ¢ k=1 t t ' e

t
Z
k=

for large enough t .

Using lemma 2, we have f £ i (f_l,hi) .

Example:

Not.every strongly forced outcome is the outcome of a perfect
stationary equilibrium in <G, < 10 L7 where all players have
evaluation relations according to-the-overtaking criterion.

Consider the following matrix game:

By B B3
Al (1:1) (0,0) (0:0)
A, (2,00 | (0,0 | (2,1)
5, = {AA)} s, = {8,,8,,8,}
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(Al,Bl) is a strongly forced outcéhe, but is not an outcome of a perfect
stationary equilibrium; for if (flifz) € F is a stationary perfect equilibrium

such that Z;(fl,fz) = (A;,B;) , then for all s(1),...,s(t) €S,

B1 if fi(t+1)(s(l),...,s(t))

n
>

fz(t+l)(s(l),...,s(t)) =

n
P

B3 if fl(t+1)(s(1),...,s(t))

But then the column player can profitably alter his strategy by f1 & A2 .

with a utility flow (1,1,...) d(z (2,2,...)
Proposition 4.2: In the supergame <G, 4(1 seees -;n> . where < i
are evaluation relations according to the overtaking criterion, and s € §
-1

satisfies Mthere exist Yl €- 8- such that max ‘n.(yl ,t.) <m.(s) . v
tj€s; I i i

then there exists f € F ; a stationary perfect equilibrium such that

G(f) =s .

Proef: The didea is to comstruct f € F such that a player
deviating from.the stationary positien, or the  punishing strategy of another
player, will be punished sufficiently te eliminate his "profit". After

punishment,: the players return to the stationary- position.
N -1 .
By assumption, there exist yl such that max n.(yl ,t.)=ﬂa(Yl)<ﬂ.(S)
tij€8; 1 1 1 1
(yl is the:strategy punishing i ; the i 'th component of yl is i 's
-1
optimal-defense strategy). We write L. = T (s) - max w.(yl ,t.) >0 .
1 1 t;€S: 1 1
itog
Li is the punishment i will receive every time the punishing strategy yl

is employed against him. We will write

R, = max 4 { max w.(t.,r_i) =m.(r),m.(s) -7, (r)}20. R, is the
1 r€{s,uﬁ...yn} tj€s; 1 1 1 1 1
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maximal relative profit a player i can gain by deviating from one of the
n+l single game strategies deployed in f , and by bringing to an end the
punishment of anether player.

We will now define mi(s(l),‘..,s(t)) and fi(t+1)(s(1),...,s(t))
inductively a; follows:
Qni(s(l),...,s(t)) is the length of time a player will be punished for

participating in s(1),...,s(t) .)

"
(=]

m, (9)

£,

1}
v

R.
[—1—] +1 if for all j, my(s(1),...,s(8)) =0 (1)

s;(t+1) # o, and s h(t+l) = ot

mJ. (s(1),... ,s(t))‘Ri

Ly

+ 1 if there exists j # i (2)
such that

. 1),...,s(t 0
5108 (541} - ) ms (s (1) _s( ))>

J

si(t+lJ * vi and

. -i
s7ite1) = v

mi(s(l),...,s(t)) -1 if mi(s(l),...,s(t)]> 0 (3

and s-i(t+1) =y

0 otherwise . 4)
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Lemma: For all s(1),...,s(t) € S, the number of players i for

whom mi(s(l),...,s(t)) >0 1is at most 1 .

Proof: By induction on t . When t = 0, the number is O .
Suppose lemma is true for t ; we will prove it for t+1 . If for all i ,

mi(s(l),...,s(t)) =0, then mj(sfl),...,s(t+l)) > 0 only if condition (1)
in the definition of m, is satisfied, and this can happen for one player

only. For if m, (s(1),...,s(t))> 0, and if all other players are

Yo .
-i, -1
"disciplined", i.e., s (t) = v , then only for iO will
m, (s(1),...,s(t+1)) > 0 (the case: (2)). If only one player j # i0 “will
0 i
be undisciplined, i.e., sj(t) * YjO , then only mj(s(l),...,s(t+l)) will

be greater than zero. 1In all other cases, no player deserves punishment.

Thus we can define

.

Y if mj(s(l),...,s(t)) >0
£, (t+1) (s(1),...,5(1)) =
si otherwise .

Clearly f is stationary and 6(f) = s .
Let r(1),...,r(T) € S, and define
?i(t)(s(l),...,s(t—l)) = fi(t+T)(r(1),...,r(T),s(l),...,s(t—l)) . We will show
that f is an equilibrium.
i . - z-1i . <.
Let hi € Fi ; we will prove that £ 7ti (f ’hi) . It is sufficient

to show that if there exists t. such that ni(c(?)(to)) < wi(c(f_l,hi(to)) ,

0
t g .
then there exists ty < t; such that I . @E @) 2 T or eENLh)w)) .
t=t 1 t=t 1 i
0 0
. - to-1 .
We will denote mj ({o(f ,hi)(t)}f=1 ) by m, . If m, > 0, i

cannot profitably deviate, since
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-1

i i
m.(y") = max w.(y st.)
1 tlesl 1 1
Ry
If mj =0 for all j , we will define t1 = to ol ol B 1 ; for
. : i
. . .1
all tg<tt , o 1(f'l,hi) =y' , thus
3! a-i 2 < i <
tEt [wi(o(f h) () - w, (o (£(E))] 2 Ry = (I + 1Ly =0
0 i
m, - Ri
If mj >0, j #1, we define tl = tO + —l_TT-_' +1; for
- i
S i aei it
all t <t ¢, , o (f7,h,) =« , and thus
0 1 i

t1 _ ai m, - Ri <

I” m.(s) - 7. (a(£(E))+ w, (o(f L)) - 7. (s) SmeR, - ( SN N L. =0 .
t=t 1 i i i i ji -Li i

5. Strong Equilibrium

We have so far considered stationary equilibria in supergame, where
equilibrium was defined as a strategy n-tuple where no deviation by a single
player would be worthwhile for him.- In this section, we will consider strong
equilibria; that is strategy n-tuples with the property that no coalition exists
which enables- the members-of the coalition to deviate en masse, and give every
coalition member a better utility flow than he would have otherwise obtained.

We will no longer use- the- concept of stationarity, since the central
element- in the behavior of- coalitions in supergame will be the- co-ordination
between- the-players at different times. Thus in the following 2-player game,

where S1 = {al,az} s S, = {bl’bz} » and the payoff function is given by the
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matrix b1 b2
a (1,0) (0,0)
az (0,0) (Oal)

we should expect a non-stationary equilibrium, for example:
"At time 2k+1 the players play (al,bl) , and

at time 2k the players play (az,bz) .

Definitions: f € F is a strong equilibrium if there does not exist

§#BEN, and g; € F; such that for all i€ B, (fN_B,gB);if.
f € F is a strong perfect equilibrium if for all r(l),...,r(T) € S,
feF, given by

E(1) = £(T+1)(x (1), ..., (T))

) (s(1),...,s(t)) = £(T+t+1) (r(1),...,x(T),s(1),...,s(t))
is a strong equilibrium.

We will denote sB = I S,

The characterization of strong equilibria will be obtained using the

following definitions: Let A be-a set. Then

c(A) ={c|c:A=T[0,1], c(a) > 0 for a finite number of
a€A, and ZA c(a) =11} .

a€

a € E' will be called a desired payoff if a € conv n(S) and

.#._ -
satisfies "for all § #+ B E N there exists .sN B € SN B such that for no

b € conv {n(sB,sN—B) | s e s®y a® << b® . v Y A desired payoff has the

l/ If x,y € W(S)B s we will write x <<y if for all i € B, X; <'yi .
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property that for all § # BS N , there is a correpsonding punishment
inflicted by N - B such that even-if the players in B couldv randomly
co-ordinate their strategies in a single game, they couldn't guarantee
themselves more than the desired- payoff offers. For every g € C(SB) and

YN_B e s\ B , we will write:

I I G BN o CL i)

sBesB

B. B N-B
m(C ,Y

(

The following lemma, taken from [2] (lemma 5.2 there) will be used

in the main propositiens of this section.

Lemma 5.1: Let Z be a finite set, and let y € C(Z) . For every

map ¢ : N> Z, and for every natural number k , given z € Z we will

write
eptoz) =[5 [ v(@) =2, j Sk}

(the number of times ¢- takes the value z in the interval - [1,k] )
Then there exists ¢ : N - Z such that for all z € Z ,

e (k,2)

lim L —= y(z2)
k

The following proposition gives a sufficient condition for f € F
to be a strong equilibrium in a supergame with evaluation relations containing

1/

the limit of means evaluation relation, ~

Proposition 5.2: Let G = <G, —<1,..., .<n> , where for all

<i is an evaluation relation contained in the relation determined by the

1/

= Let R;S be binary relations on a set A . S contains R if for all

a,b €A, aRb-= aSb ,
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limit of means. If f € F is a strong equilibrium in 6", then for

=)

rom (a(£)(t))
1

(ad
0]

T T

a 1is a desired payoff.

Proof: conv wm(S) is closed, hence a € conv m(S) . Suppose a is
not desired. Then there exists B # @ such that for all 5N~B € SN—B there
exists b € {n(cB,sN—B) | Be C(SB)} such that ab << b® . Let

B N-B

0 <Ee < min {"i(c ,S ) -a.} .

min max i
sN-BesN-B cBec(sBy  iep

Since L i=1,...,n, is uniformly continuous, there is a
finite open cover Ul""’Uk such that for all s,t € Uj ,
€ s N-B B .
(ni(s) - ni(t)| <z - Since S , .8 are compact, there is an open
N-B B B
cover of S {Ol,...,OL} , such that for all 0j and for all s € S
there exists m such that Um 2 Oj x {SB} . Let us chose rN-B(j) € Oj , and

let cB(j) satisfy

ENCIRARICI I a, >c foralli.

Let wi : N> Z be maps satisfying, for all sB € SB ,
B
oy, (kss)
: i B, B
lim —————— = ¢ (s)
ke k

Their existence is guaranteed by lemma 5.1.
We will now define g; € Fi for all i € B .inductively, together
with mj(t) , the number of times B use cB(j) up to time t .

Let satisfy fN_B(l) € 0j

j
! 1
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Then for all i € B, 153351
g (1) = 4y D)y
mj(lJ =
0 otherwise

Proceeding by induction, let jt+1 satisfy

£ P o PPy L)) € o
t+l

Then gy (e (o(€ %I = vy @y ©) ¢ 1) and g;(e1)

defined arbitrarily at other points in its domain.

is

mjle) + 1 Sl P}
mj(t+1) =
m, (t) otherwise.
j T N-B B
RARNCICRFOTO)
Let j(t) satisfy o' D(f,g)(t) € 0,.. . Then 1lim
i(t) - T
T B_.N- -
tom (oo BBy ),V By
t=1 1 i) €
Z lim 7 T
T
B
L . (T3 (1),s%)
DT T 5 e o (8B B o))
j=1 i sBegB T. (T) i
= lin = -

o

T

where Tj(T) =[{t]ljim)y=3, 15t=<T}

For j satisfying Tj(T) 7

Vv
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B
by, (T5(1),s" )

lin § —-— . ﬂi(sB,rN-B(j(t))) 2a e,
T sBesB TJ. (T
Thus T
N-B B
Iom (o(f ,g7) (1))
t=1 > €
lim - ai + T
T
Therefore for all i € B , (gB,fN-B) >. f

The following proposition will give a sufficient condition for
payoffs in nw(S) to be the average payoff of a strong perfect equilibrium of
a supergame in which the evaluation relations are according to the limit of

the means.

Proposition 5.3: Let G = <G"<1"""<n> be a supergame where
forall 15ifn, < i is an evaluation relation according to the limit
of the means. If a € Rn is a desired payoff, then there exists f € F ,

a strong perfect equilibrium such that for all i =1,...,n,

T
om0 ()
Cot=1
a, = lim
T T
roof: For every § # BE N we will denote b N-B a strate
Proof: y < Y Y gy

in sVB uhich guarantees that for all b € {n(cB,yN—B) | Pe C(SB)} ,
aB </< bB . The existence of such a YN_B follows from the definition of
desirability.

Now, a € conv w(S) , thus there exists c¢ € C(S) such that

m(c) = a . Let ¢ be a map from the natural numbers into S , satisfying
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pw(k,S)

= c(s) .

lim
ko k
By Lemma 5.1, such a map exists.

For every s(1),...,s(T) € S, we define the set of deviants after
s(1),...,s(T) , B(8(1),...,3(T)) in parallel with the definition of f € F ,
by induction on T .

B(#) = ¢

£, =)y -

[A if A = B(s(1),...,s(T-1)jU

Ud{i] si(T) # £.(TM)(s(1),...,5(T-1)) } + ¢

and if for all i € A
B(S(l)’~'¢,S(T))‘= 4 g “i(S(t))
t=1 T

2 a, +
i

3l

P otherwise

-

YT'B(S(I)""’S(T)) if B(s(1),...,s(T))4% §

and i € B(s(1),...,s(T))

arbitrary if B(s(1),...,s(T))*# # and

fi(T+1)(s(1),...,s(T)) = J i € B(s(1),...,s(T))

wi(T—k) if B(s(1),...,s(T))= @ and

k=max { t | B(s(1),...,s(t)) # # v t=0 }

AL
| e



Let r(1),...,r(T) € S .
fi(t)(s(l),...

We will show that f

»s(t-1)) = fi(t+T Yyi(r(),..

30

Define

.,I‘(T),S(l),. . -,S(t'l))

is a strong equilibrium, using the following four lemmas,

on of which shows that the players account for the mean payoff a , and another

that there does not exist a collective deviation profitable to all those

deviating.

Lemma 1: If f € F has the property that for all t > T

cB(f)(t) = YB , then there is i € N-B and s> T

+

s
T E® ) < a;

™, (9 (F) (K))

0’

0 such that

.

A
/s

To

s
z ni(o(f)(k)) + z

™, (0 (£) (k)
k=1 k=T0+1

s
Proof: b =
k=1 s

A

emma 2: There exists T

1

B(r(1),...

Proof: 1If B(r(1),...

Otherwise, by Lemma 1, there exists

i € B(x(1),...

c + (s-To)ai

for some i

for s sufficiently large.

H
o [

such that for all T, £t ,

1

»T(TY, o(f)(1),...,0(E)(t)) = 8 .

,r(T)) =P, then T, =T will do.

1

,r(T)) and T1 such that
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T+T 2
1w, (a(£) (k) 1

T S < a4

k=l TaT . YT

Therefore, for every T, St, B(r),....,r(M,oBH@),...,a®)t) =9 .

Lemma 3: Let hB € FB . Then there exists T2 such that for

C(t) , defined by
C(t) = B(x(1),...,x(M,o®, By ), ...,0m®, Byt
we have C(Tz) =0 .

Proof: Suppose not. By the definition of the set of deviants,
C(t) £ C(t+1) for all t . Thus there exists T' such that for all T' £t ,

N-C(T') (4B gN-B N-C(T")

() = v and C(t) = C(T') . Thus by lemma 1,

there exists i € C(T) and T" such that

TH '

T
B zN-B
Iow.(r(k)) + £ . (o(h,E k
K21 1 (1 (X)) 12 ;0o Y (k) .
< a, +
T+ T 1 |/T+T”
contradicting i € C(T"+1)
emma 4: Let hB € FB Then for every tO , there exists t 2 tO
such that
T Tft B N-B
I om(rk)) + L w (o(h,E D)Xk
k=1 1 k=1 1 1
< a, +
T+t * YT+t

for some i .
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Proof: By lemma 2, we may assume that T, < tO , and thus the set

2

of deviants is a subset of B . Define
B zN-B B =zN-B,,
D(t) = B(x(1),....,x(M,a B, B By), ..o, By )y .

If for every t 2 to s D(t) = # , then the lemma follows from lemma 1.

# , then there

Suppose D(t,) # # . If D(s) + § , and D(s+l)
0

exists i € D(s) satisfying

T T+s B .N-B
I om(rk)) + & w.(o(h,f T)K))
k=1 1 k=1 1 < 1
- a. + PE———
T+ s . VT+s
If the lemma is not true, then D(SZ) S.D(sl) for all t0 < s, < sy - Thus

there exists T3 such that for every T3 <t D(t) = D(TS) . By lemma 1,

there exist i € D(T3) € B and T3 <t such that

T t B -N-B
BIRNCONEI R NCIC BBy oy

T+t N /T+t

a contradiction.

Example and Comment

In matrix games, the desired payoffs are contained in the B-core, but
the converse is not necessarily true. Let us look at the following 3-person
game, where each player has two pure strategies, a; and bi . The payoff
matrix is represented by two matrices, where player 1 is the row player, player

2 is the column player, and player 3 chooses the matrix.
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2 b, ) b,
a, (2,2,2) (1,1,0) a (0,0,4) (1,1,3)
bl (1,1,3) (0,0,4) bl (1,1,0) (2,2,2)

For every 1 i £ 3, Si is the set of mixed strategies
naturally identified with the interval [0,1], where the choice p € [0,1]
corresponds fo the strategy p-ai + (1-p]-bi .l/ The payoff functions are the
expected utilities. (2,2,2) 1is a payoff in the B—core, since the only
coalition with a possible profitable strategy deviating from (al,az,as) is
{3} ; but {1,2} have a punishing strategy %-- (al bz) + %-- (az,bl) ,
which reduces 3's expected payoff, whatever his strategy, to 1.5 < 2 .

However, (2,2,2) is not a desired p;yoff since for p € Sl N

q€e S player 3 may obtain

2 3
max {2pq + 3(1-p)q + 4(1-p)(1-q), 4pq + 3p(l-q) + 2(1-p)(1-q)} which is

strictly greater than 2.

Example

Let us examine the following 3-person game presented in extended
form. For every player, Si = {Ri,Li} » with evaluation relations according

to the avertaking criterion.

y pea; + (l—p)-bi denotes the strategy 'play a; with probability p ,

and bi with probability (1-p) . "



34

1
Rt
L 2 3 &R
2 3
_—\X Ly f—u
(1,1,1) (0,4,0) (0,0,4) (0,4,0)

(1,1,1) is a stationaryypayoff of a strong equilibrium in the
supergame, despite the fact that for every S < {1,2,3} , either no deviationv
exists profitable to every player in the supergame, or {1,2,3} - S can
"retaliate", punishing at least one of the players in S .

In this example, we see the possibility of deviation by stages.

An equilibrium strategy must punish player 2 for his deviation R2 , as
follows: every time 2 gains 4, 2 and 3 will play (Rl’LS) at least
three times; however, already after the first punishing game, both 2 and
3 will have averaged more than 1 . . Thus the coalition {2,3} «can
plan the following ruse: 2 deviates; after being punished once, 3 plays

‘alternatively LS’R while 2 plays L, . This strategy is preferable

3’ 2

according to the overtaking criterion to a strategy with a constant flow of 1.
On the other hand, the following proposition may be proven in a
similar way to the last one.

Proposition: Let a € conv w(S) be such that for all B there is

B e NB  oich that for all cb € c(sP) , there exists i € B such

that wi(cB,yN-B) < ai ; assume further, that < i is according to the

overtaking criterion. Then there is a strong equilibrium f such that
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T
tzl m, (0 (£} (£))

1im ————————— =1a. , for all i €N.
T T 1

The next example shows among other things that the conditions of the
proposition just given are not sufficient for the existence of a strong perfect

equilibrium.

Example

Let us look at the following 2-person game:

b b

1 2
a, | 2.2 (1,1)
s S, = {al,az} > Sy = {bl,bz} .
a, (4,0) (1,1)
T, o, W are represented by the above matrix.

2
The B-core payoff is {(2,2)} , which is also the set of strongly

forced payoff. But in supergame, with evaluation relations according to the
overtaking criterion, there is no strong perfect equilibrium. For, suppose
that f € F is a strong.perfect equilibrium. If there exist r(1),...,r(T)

such that fz(T+1)(r(1),...,r(T))= b2 , then, writing

]

fi.(t)(sfl)‘,---,s(t-l]) 4T (x (1) 500057 (T)58(1),5 -0, 5(E-1))

g, (1) =2, ,

g, () (s(1),...,s(t-1))

[}

B (e®),s(2),...5s(t-1))

g,(1) =b,,

g, () (s(1),...,s(t-1))

() (e(B)(1),s(2),...,s(t-1))
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we have o(g)(1) = (a;,b,) m(e(g) (1)) = (2,2) >> (1,1) = n(a(E)(t)) , and

for t 22,
a(g)(t) = o(f)(t) , m(o(g) (t)) =m(a(E)(t)) .

Thus for i € {1,2} , g ;—i f . It follows that £,(t) =b, forall t .
Clearly fl(t) = a, for all t , otherwise we obtain a‘contradiction to
perfection, but now the deviation of player 2, given by fz(t) = b2
guarantees him a utility flow 1 > 0 , contradicting f being an
equilibrium.

Intuitively, the situation is as follbws: players 1 and 2 agrée to

lay (a,,b,) ', but 1 deviates and plays a Player 2 threatened from the
P 1°°1

2
start to punish him by playing b2 . If the players were unable to cooperate
in supergame, an equilibrium would exist, by 1 threatening to punish 2 if 2
does not punish him, or, by participating in his own punishment by playing a,
immediately after deviating.

However, assuming that the playérs can cooperate, after the first
game they agree to '"forgive" 1, since this is a common interest. Of course,
1 deviates again (why shouldn't he?) and he is again forgiven, and so on.

This example deals with the situation where punishment causes a
loss to the punishers, who thus occasionally prefer to fqrgive £for reasons
similar to 2's here. It also, in my opinion, exposes the limitations of the
description of supergame and the concepts of solution given in this paper.
There is lacking a notion of "precedent"; if we do not-ignore 2's expectations,
iwe have to introduce into his calculations the possible consequences of not
punishing 1.

In contrast to this example, the situation described as the "Prisoner's

Dilemma'" has a strong perfect equilibrium. This game is the same as the previous



one, but with the following payoff matrix.

]
o

m, (1)

"
(=)

£,(1)

m. (t) (s(1),..

£ () (s(1),...
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bl b2
a, | @2 | 03
s, G0 | an

s(t-1)) = 9

»s(t-1)) =

L0 otherwise

b, if j #1i

m (t-1) (s (1), ...

Lai otherwise.

=

We define fi(t) and mi(t) by induction on t .

1 if s.(t-1) # a. and
i i

m (e-1) (s(1),...,5(t-2)) = 0

mi(t-l)(s(l),..

my (£)(s (1), ..

for all j

,s(t-2)) + 1 if si(t) *a, and

.,s(t;Z)) > 0.

,s(t-1)) # 0

The players are planning to play (al,bl) unless one of them

deviates.

[(al,bz)] .

& 2

If 2

e

ey

deviates, 1

(2) punishes him, by forcing

does not co-operate in his own punishment, player 1

(a,,b;)

)
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will increase the period of punishment. Clearly, in contrast to the previous
example, the punishing player profits from the punishing arrangement and he
has no motivation to forgive the deviant. It is easily verified that f is

indeed a strong perfect equilibrium.

6. Some Comments on the Overtaking Criterion

(1) An axiomatic characterization is given in Brock [6].
(2) N is the natural numbers, RN the set of real number sequences.

Let F0 be a filter of N . Define < on E" by: x < y 1iff there exists

€ >0 sucht that { n | S,(0) -8 (x) 2e}EF

n
0 where Sn(x) = iE X.

1717
< is an ordering relation, since if x £ y and y < z , then there are

€1:€, > 0 such that

1,
= _ >
Ap=1{n | 5,(z) -8 (¥) Z ¢ } €F,
= _ >
Ay=1{n | S, (¥) - 8,(x) 2 e, } €F,
Thus { n | §.(z) -8 (x) 2e +e, }2A NA EF .

Thus { n | Sn(z)

s, (x) z €1 * &y } € Fo amd x< z.

Also x £ y = There is an 0 < ¢ such that {n | Sn(y) - Sn(X) 2 e} € Fo
= There is an 0 < ¢ such that {n | Sn(y) - Sn(x) < e}l € FO
- > ;
= {n | S, (x) - S (y) 28} g F, forall & >0

=" y.7ﬁ X

(3) In particular, if we choose F0 ={AcN| N-A is a finite set} ,
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then the filter F0 induces an order relation identical to the evaluation
relation according to the overtaking criterion.
Denote by < c the overtaking relation, and by < 0 the relation

induced by F0 . Then

X .AC y iff lim Sn(y) - Sn(x) >0 .

iff there exists e > 0 such that Sn(y) - Sn(x) > €

for all but finite n .
iff x < 07 -

(4) There does not exist utility function re?resenting the
overtaking cirterion, that is, no function u: RN + R satisfies
u(x) <u(y) ® x < Y for all x,y which are {c related.

For, for every a, €ER, (ao,ao,...]_<c (a0+1,a0,...) and for

Nhas N £

every a; < a, , (a0+1,a0,...) < (al,al,...) . Thus R c

0

segments which are disjoint and non-empty, while (R, <) has less.
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