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1. Introduction

It appears that many assumptions in economics are adopted for technical convenience

rather than because they express aspects of human nature. This observation provides

the motivation for replacing standard definitions of properties of preference relations

with formulations that admit a more natural interpretation. It also leads us to

seek formulations that extend the standard framework, but also apply to settings

where the underlying grand set is not Euclidean and without any reliance on utility

representations.

The approach we use originated in Richter and Rubinstein (2019), and was refined

in Richter and Rubinstein (2024). The grand set of alternatives X is enriched with a

collection Λ of primitive orderings on X , each representing a relevant consideration. We

introduced the concept of Λ-convex preferences: a preference relation on X is Λ-convex

if, for every element of X , there exists at least one ordering in Λ, called a critical ordering,

whose advancement is necessary for improvement.

As an example, we considered a reviewer of candidates who vary in their research

output, teaching ability, and charisma. If the preferences over candidates are Λ-convex,

then for any candidate x there is a criterion, say research, which has the property that for

a candidate to be superior to x , it is necessary for the candidate to be a better researcher.

However, research does not have to be the only such criterion; there could be multiple

orderings whose advancement is necessary for improvement.

This definition of convex preferences requires no algebraic structure on the space

of alternatives and it captures a sense in which convexity is related to the background

considerations used to form the preferences. In Richter and Rubinstein (2019), it was

shown that this definition encompasses the standard definition of convex preferences in

a Euclidean space by taking Λ to be the set, denoted Ψ, of all “algebraic linear orderings”

(those represented by a utility function α ∙x for some non-zero vector α).

In this paper, we continue this research agenda by offering a new definition of

“convex-differentiable (CD) preferences.” The definition is related to the standard re-

quirement that preferences be represented by a differentiable and quasi-concave utility

function with non-zero gradient at any non-maximal point. Rubinstein (2012, pages 55–

56) suggested an alternative definition of differentiable preferences on Euclidean
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spaces, which is formulated directly on the preferences and does not mention the word

“utility.” That definition was not equivalent to the standard one but captured much of

what differentiable preferences do (see also Renou and Schlag, 2014).

We now propose a definition of Λ-differentiable convex preferences without any

reliance on algebraic structure. The concept requires that for each alternative which

is not maximal, there is a unique primitive ordering in Λ which is both necessary for

improvement and sufficient for deterioration according to the preferences. We call this

ordering the gradient of the preferences at that alternative.

Notice that Λ-differentiability adds the following two requirements to Λ-convexity:

(i) moving down in the ordering harms preferences, and (ii) there is no other such

ordering. Returning to our previous example of ranking candidates, given some Λ-CD

preferences over the candidates, if research is the gradient at candidate x , then not

only is being a better researcher necessary for being judged above x , but also (i) any

candidate who is inferior to x in research is judged to be inferior and (ii) there are no

other such criteria.

As will be shown, these properties hold for the standard gradient in the Euclidean

setting. However, the standard gradient has another property, namely that small local

moves in the direction of the gradient are strictly improving, which we do not require.

Given that the space is abstract, often there is no notion of local moves.

Our interest in a new definition of differentiable preferences emerged as a purely

conceptual discussion. Accordingly, we study some basic properties of the concept and

characterize the set of Λ-differentiable preferences in a number of settings (both finite

and infinite). As a demonstration of its potential within a classical economic setting,

we consider an exchange economy with two agents and a finite set of indivisible and

distinct goods. It is well known that in such economies, the second welfare theorem can

fail (Shapley and Scarf, 1974). We let Λ consist of all linear pricing orderings and show

that for the two-agent exchange economy, if both agents’ preferences satisfy a variant of

Λ-differentiability, then the second welfare theorem holds (namely, any Pareto-optimal

allocation is also a competitive equilibrium outcome with linear prices).
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2. Differentiable Convex Preferences

Let X be a non-empty set and let Λ be a set of primitive orderings (each being a

preference relation, namely, a complete, transitive, and reflexive binary relation) on X .

We denote a generic primitive ordering by D∈Λ.

Given a preference relation % on X we say that D ∈ Λ is critical at x if for every y ,

it is necessary for y � x that y B x (where � and B are the strict parts of % and D,

respectively). The relation% isΛ-convex if for every x ∈ X there exists at least one critical

ordering in Λ. Note that if D is critical at x , then any alternative that is weakly D-lower

must be weakly%-dispreferred.

For our definition of Λ-differentiable preferences, we refine the critical ordering

notion. An orderingD∈Λ is a gradient of % at x if

(i) if y � x then y B x ; and

(ii) if x B y then x � y .

A preference relation % is Λ-convex-differentiable (Λ-CD) if for any non-maximal

element x ∈ X there is a unique gradient ∇%(x ) in Λ. Denote by D(Λ) the set of Λ-CD

preference relations. For any preference relation % and x ∈ X , let U�(x ) and L�(x )

denote the strict upper contour set and the strict lower contour set at x with respect

to %. That is, a preference % is Λ-CD if for each non-%-maximal x there is a unique

D ∈ Λ such that U�(x ) ⊇ U�(x ) and L�(x ) ⊆ L�(x ). (Note that in the standard setting,

the gradient at a maximal point fails to indicate a direction of improvement because no

such direction exists. Likewise, in our setting, at a maximal alternative, there may be no

unique gradient.)

3. Properties of Λ-CD Preferences

(1) Existence of non-trivial Λ-CD preferences. Total indifference is trivially a Λ-CD

preference because every alternative is maximal. The existence of a non-constant Λ-

CD preference is not guaranteed. For example, if X has at least three elements and Λ

contains all strict orderings on X , then no non-constant preference relation is Λ-CD

since at any non-maximal element there are multiple gradients (including all primitive

orderings which rank that element at the bottom).
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(2) Differentiability of primitive orderings. Natural candidates for Λ-CD preferences are

the members ofΛ themselves. However, the above example demonstrates that members

of Λ need not be Λ-CD. A condition which guarantees that the primitive orderings are

themselves Λ-CD is non-nested upper contours: for all x , there are no two orderings

D,D′ ∈ Λ such that U�(x )⊇U�′(x ) 6= ;. This condition is satisfied by the set of algebraic

primitive orderings on RK .

(3) A Pareto property. As noted in Richter and Rubinstein (2019), a weak Pareto property

holds even if the preferences% are just Λ-convex. If a Db for allD∈Λ, then a %b since

otherwise there would be no critical ordering at a .

If % is Λ-CD, then a strict Pareto property also holds: if a � b for all D ∈ Λ and b is

not%-maximal, then a � b . This is because if a is%-maximal, then we are done. If not,

then there is a gradient at a , and b is lower than a by that gradient, so by property (ii) of

the definition of Λ-CD preferences, it must be that a �b .

(4) Λ-CD preferences with a unique primitive ordering. If Λ = {�} and � is strict, then

� is the unique strict Λ-CD preference relation: for any preference relation, if b � a

and a �b , then there is no gradient at a . The only other Λ-CD preference relations are

those formed by creating indifferences at the top and continuing the strict preference

thereafter. (Suppose a ∼ b are not %-maximal and without loss of generality a � b .

Then, the gradient at a has to be � and therefore a �b by property (ii) of the gradient, a

contradiction.)

(5) D(Λ1) and D(Λ2) need not be nested when Λ2 ⊃ Λ1. We have seen that if Λ1 consists of

a single strict ordering it is Λ1-CD, but it is not Λ2-CD when Λ2 contains all orderings. In

addition, if Λ1 consists of a single strict ordering and Λ2 also includes its opposite, then

both orderings in Λ2 are Λ2-CD, but only the original one is Λ1-CD.
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4. Λ-CD and Standard Differentiability

In the standard Euclidean setting, a preference relation is differentiable if it is repre-

sentable by a differentiable utility function. We will now show that the definition of

Λ-CD extends the standard definition on Euclidean spaces.

Let X =RK and Ψ be the set of algebraic linear orderings, i.e., Ψ= {Dv |v ∈RK \ {0}}

where Dv is the ordering represented by the function v ∙ x . If the preference relation %

is monotonic, convex and represented by a differentiable utility function u with a non-

zero gradient at all x , then% is Ψ-differentiable and the gradient ordering is D∇u (x ).

As mentioned earlier, while the set of convex, continuous, and standard differen-

tiable preference relations is subsumed within our definition, the spirit of the definition

is not identical. The standard definition also requires that x+εd � x for any d satisfying

d ∙ ∇u (x ) > 0 and small enough ε > 0, a requirement that has no analogy in our

definition.

While standard differentiable preferences need to be continuous, that is not the case

for Ψ-CD preferences: there are Ψ-CD, monotonic, and convex preferences that are not

continuous. Figure 1 provides an example of such a preference relation on R2 which

even has a utility representation.

U (x , y ) =

(
x if x ≤ 0

e y if x > 0

x = 0

FIGURE 1: Ψ-CD preferences that are not continuous.
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5. Differentiability and Optimality

Given any primitive ordering D and an alternative e , define B (e ,D) = {x ∈ X |e D x }

to be a budget set. We refer to D as the expenditure ordering and x � y means that x is

(weakly) “more expensive” than y . We make the following analogy to a standard “budget

frontier” condition: given any expenditure ordering �, any%-maximal alternative from

any budget set B (e ,�) is �-maximal. The following claim is analogous to a standard

price theory result:

Claim 1. Let% be Λ-CD preferences that satisfy the budget frontier analogy and e ∈ X be

not%-maximal. The alternative e is %-maximal in B (e ,D) if and only if ∇%(e ) =D.

Proof. Assume that D is the gradient at e . If y � e , then y B e (by property (i) of the

gradient) and thus y /∈ B (e ,D). Therefore, e is%-maximal in the budget set B (e ,D).

For the other direction, assume that e is %-maximal from B (e ,D). Then, D is a

gradient at e by the budget frontier analogy, and since the preferences are Λ-CD it is

the only gradient at e . 2

Claim 2 states the price-theory duality result according to which “expenditure mini-

mization” and “preference maximization” are “equivalent” when preferences are differ-

entiable. Let e ∈ X be the individual’s “endowment.” Suppose that x ∗ is %-maximal in

B (e ,�) but not %-maximal in X . Define U%(x ∗) = {y ∈ X |y % x ∗} to be the weak upper

contour of x ∗ and suppose that x ∗∗ is �-minimal in U%(x ∗).

Claim 2. If % is a Λ-CD preference relation satisfying the budget frontier analogy, then x ∗

and x ∗∗ are (i)%-indifferent and (ii)D-indifferent.

Proof. (i) By the definition of x ∗∗, it holds that x ∗∗ % x ∗. Since e D x ∗ D x ∗∗, it holds that

x ∗∗ ∈ B (e ,D), and therefore x ∗% x ∗∗.

(ii) Since x ∗∗ is �-minimal in U%(x ∗), it holds that x ∗ D x ∗∗. Since x ∗ is %-maximal from

B (e ,�), it is also%-maximal in B (x ∗,�). By Claim 1, the gradient at x ∗ isD. Thus, if x ∗�

x ∗∗, then x ∗ � x ∗∗, contradicting x ∗ ∼ x ∗∗. Therefore, x ∗ and x ∗∗ must beD-indifferent. 2
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6. Examples

Example 1: Horizontal and vertical primitives on a finite grid. Let X = {0,1,2,3,4} ×

{0,1,2,3,4} and Λ = {→,↑}, where (a 1, a 2) → (b1,b2) if a 1 ≥ b1 and (a 1, a 2) ↑ (b1,b2)

if a 2 ≥ b2. A Λ-CD preference relation with a unique maximum is illustrated in

Table 1: for each non-maximal alternative, there is a unique dimension in which

moving upwards is a strict improvement while moving upwards in the other dimension

preserves indifference.

4 1→ 4→ 5→ 6→ 8
3 1→ 4→ 5→ 6→ 7 ↑
2 1→ 3 ↑ 3 ↑ 3 ↑ 3 ↑
1 1→ 2 ↑ 2 ↑ 2 ↑ 2 ↑
0 0 ↑ 0 ↑ 0 ↑ 0 ↑ 0 ↑

0 1 2 3 4

TABLE 1: Illustration of differentiability in a multidimensional discrete context.

To understand this, consider the point (0,0). By Λ-convexity, it cannot be that both

(a ,0) � (0,0) and (0,b ) � (0,0) because then there would be no critical ordering at

(0,0). By the weak Pareto property, the preferences are weakly monotonic. Accordingly,

without loss of generality, (0,0) ∼ (a ,0) for every a > 0 and therefore ↑ is the gradient

at (0,0). It cannot be that (0,0) ∼ (0,b ) for every b since in that case → would also be

a gradient at (0,0) (which is unique by Λ-CD). Thus, there must be some b for which

(0,b ) � (0,0). If (0,1) ∼ (0,0), then the gradient at (0,1) is ↑ because (0,b ) � (0,0) ∼ (0, 1).

However in that case (0,1)� (0,0) by property (ii) of the gradient, a contradiction. Thus,

by monotonicity, (0,b )� (0,0) for all b > 0. The result then follows by induction with the

bottom row removed.

To summarize, there is an “increasing” and “continuous” path from (0,0) to (4,4)

such that at every point on it, one direction preserves indifference and the other is strict

improvement.

The Λ-CD preferences have a natural meaning when the two orderings reflect the

preferences of two agents, 1 and 2. They are constructed sequentially. First one agent,

say i 1 is selected and all i 1-worst alternatives are assigned to be indifferent and are

placed at the bottom of the ranking. Then, agent i 2 (who might be i 1) is selected
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and all i 2-worst alternatives from the as-yet-unranked alternatives are assigned to be

indifferent, above those already ranked and below all other alternatives. And so on,

until all alternatives are ranked. In other words, the preferences can be thought of as an

outcome of a sequential procedure according to which at each stage, rather than stating

what is best, an agent is selected and specifies his worst alternatives, which are then

put above all previously ranked alternatives and below the rest of the alternatives. This

analysis and procedure would equally apply to other grand sets, such as X = {(x , y ) |x ∈

{0, . . . , a }, y ∈ {0, . . . , a },x + y ≤ a }where there is no uniformly top-ranked alternative.

Example 2: Horizontal and vertical primitives in the plane. Let X = [0,1]2 andΛ consist

of two primitives: the horizontal (a → b if a 1 ≥ b1) and the vertical (a ↑ b if a 2 ≥ b2)

on X . Claim 3 characterizes all Λ-CD preferences. It implies that the only continuous

monotonic Λ-CD preferences are the two primitive orderings themselves.

Claim 3. Let % be a monotonic preference relation on X and let M denote the set of %-

maximal points. Then % is Λ-CD if and only if X \M can be partitioned into two sets U

and R such that:

(i) if x ∈U, then any point weakly to the southeast of x is also in U; and thus if x ∈R, then

any point weakly to the northwest of x is also in R;

(ii) any point (a ,b ) ∈U is on a horizontal indifference line to (1,b ) denoted Hb , and any

point (a ,b )∈R is on a vertical indifference line to (a ,1) denoted Va ; and

(iii) for two horizontal indifference lines H a and Hb the former is preferred if and only if

a > b , and likewise for any two vertical indifference lines Va and Vb ; to compare Va with

Hb , look at the point (a ,b ): if it is in U, then Va �Hb and if it is in R, then Hb � Va .

Figure 2 illustrates such a preference relation. The boundary between the regions U

and R is indicated in blue and the preferences are strictly increasing on this path. The

partition U , R indicates the gradient (if a ∈U the gradient is ↑, otherwise it is→), which

is displayed as arrows in the figure. Indifference lines are indicated by dashed lines and

they are ranked by where they touch the path. If two indifference lines touch the path at

the same point, then they are ranked by that point’s membership in U or R (in the figure,

the red dashed indifference lines at a point are preferred to the gray).
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R

U

FIGURE 2: Λ-CD preferences in Example 2.

Proof. Obviously the preferences with the structure described in the claim are Λ-CD

with ∇%(x ) = ↑ if x ∈U and ∇%(x ) =→ if x ∈ R . In the other direction, consider a Λ-CD

preference relation %. Let R = {x ∈ X \M |∇%(x ) =→} and U = {x ∈ X \M |∇%(x ) = ↑}.

Notice that it is impossible for there to be points x ∈ R and y ∈U such that y is weakly

up and to the left of x . If such an x and y existed, then by property (i) of the gradient,

y % x because ∇%(y ) = ↑ and likewise x % y because ∇%(x ) =→. But by property (ii) of

the gradient, at least one preference must be strict. Therefore, if x ∈U , then any point

to the southeast of x must also be in U (and analogously for x ∈R).

For any x , if ∇%(x ) = ↑ then any point y to the right of x must be indifferent to x (it

must be that y % x by the weak Pareto property and it must be that y - x by∇%(x ) = ↑).

An analogous argument applies for any x with∇%(x ) =→.

Finally, suppose that (1,b )∈U and (a ,1)∈R . Without loss of generality, assume that

(a ,b ) ∈ U . By monotonicity, it must be that (a ,1) % (a ,b ). If (a ,1) ∼ (a ,b ), then all of

the points on the L-shaped broken line segment traced out by the points (1,b ), (a ,b ),

and (a ,1) are indifferent. In this case→ would also be a gradient at (a ,b ), contradicting

uniqueness. 2

Example 3: Differentiability with single-peaked orderings. Let X = R. A preference

relation � is single peaked if there exists a p e a k ∈ R such that a <b < p e a k < c < d

implies a �b � p e a k � c � d . We take Λ to be a set of single-peaked orderings. In

the political economy literature, single-peaked preferences are used to model a voter’s

preferences over social policies with p e a k representing the voter’s ideal policy. The

Λ-CD property can be thought of as a requirement on the aggregation of different

preferences into a social preference.
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We restrict the members of Λ to be balanced in the sense that for every x 6= p e a k

there is another unique point m (x ) on the other side of the peak such that x and m (x )

are indifferent. Define m (p e a k ) = p e a k .

We say that D1,D2, . . . ,DK are systematically ordered if for every x we have m1(x ) <

m2(x )< ∙ ∙ ∙<mK (x ) and in particular p e a k1 < p e a k2 < ∙ ∙ ∙< p e a k K .

In the following claim, attention is restricted to preferences that are continuous and

have at most one maximal point (in order to rule out trivialities such as preferences with

total indifference).

Claim 4. Let Λ= {D1,D2, . . . ,DK } be a finite set of single-peaked orderings on Rwhich are

balanced and systematically ordered.

(a) Assume K = 2. If % is a continuous preference relation on R that has at most one

maximal point, then% is Λ-CD if and only if

(i)% is single peaked with p e a k ∈ [p e a k1, p e a k2]; and

(ii) % is balanced; if x < p e a k , then m1(x ) < m (x ) ≤ m2(x ); and if x > p e a k , then

m1(x )≤m (x )<m2(x ).

(b) If K ≥ 3, then no continuous Λ-CD preference with a unique maximal point exists.

Proof. (a) Suppose that % satisfies conditions (i) and (ii) and denote its unique maxi-

mum point by p e a k . Without loss of generality, it is sufficient to deal with x < p e a k .

By condition (ii), m (x ) ≤ m2(x ), and thus U�2(x ) = (x , m2(x )) ⊇ (x , m (x )) = U�(x ) and

L�2(x ) = (−∞,x ) ∪ (m2(x ),∞) ⊆ (−∞,x ) ∪ (m (x ),∞) = L�(x ), so �2 is a gradient at x .

To see that �1 is not a gradient at x , note that for x ∈ [p e a k1, p e a k ), p e a k � x but

x �1 p e a k . For x < p e a k1, we have m1(x )<m (x ) by condition (ii), and so for any point

y such that m1(x )< y <m (x ) it holds that y � x and x �1 y .

Now suppose that % is Λ-CD, continuous, and has at most one peak. It must have a

maximum point (and is thus unique) since by the strict Pareto property the preferences

are strictly increasing to the left of p e a k1 and are strictly decreasing to the right of p e a k2

and by the continuity of the preferences they have a maximum in the closed interval

[p e a k1, p e a k2]. Denote the maximal point by p e a k .

For every x < p e a k the gradient must be D2. This is obvious for x ∈ [p e a k1, p e a k )

while for x < p e a k1, it holds that U�1(x ) ⊂U�2(x ) and L�1(x ) ⊃ L�2(x ) and thus by the

uniqueness of the gradient, it must beD2. Therefore, for every x < p e a k the preferences
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are increasing. Analogously, the preferences are decreasing for x > p e a k and thus, the

preferences are single peaked. Furthermore, U�(x )⊆ (x , m2(x )) for every x < p e a k and

by the continuity of the preferences m (x ) exists and m (x ) ≤m2(x ). In order for D1 not

to be a gradient at x , it must be that m (x ) >m1(x ). An analogous argument applies to

every point to the right of p e a k .

(b) Suppose that Λ = {D1,D2, . . . ,DK } are systematically ordered single-peaked order-

ings. We now show that there are no Λ-CD preferences. Let x , y be ordered x < p e a k1 <

p e a k K < y such that x ∼2 y . (Such a pair exists since take x < p e a k1. If m2(x )≤ p e a k K ,

then choose y to the right of p e a k K and its mirror must be to the left of p e a k1.)

Suppose that x % y and x is not %-maximal (since there is at most one %-maximal

alternative, if x is %-maximal, start with a different pair x ∼2 y to begin with). By the

strict Pareto property, every point to the left of x is strictly %-inferior to x and every

point to the right of y is strictly %-inferior to y . Thus, U�(x ) ⊆ (x , y ) = U�2(x ) and

L�(x ) ⊇ (−∞,x )∪ (y ,∞) = L�2(x ). Thus, D2 is a gradient at x . Since the primitives are

systematically ordered, it holds that U�2(x ) ⊆U�3(x ) and L�2(x ) ⊇ L�3(x ), and thus D3

is also a gradient at x . Similarly, if x - y then both D2 and D1 are gradients at y , a

contradiction. 2

7. A Modified Definition (Λ-CMD)

For the rest of the paper we work with a variant of the notion of differentiable prefer-

ences. The motivation for this modification is that in some cases a preference relation

may have multiple gradients, but among these gradients, there is one which is tighter

than all the others in the sense that it has a smallest upper contour set. We will call such

a preference relation convex minimal differentiable, denoted CMD, and will refer to such

a gradient as a minimal gradient.

Formally, given a preference relation %, a gradient D ∈ Λ at x is a minimal gradient

of % at x if for every gradient D′ at x we have that y D x implies y D′ x . A Λ-convex-

minimal-differentiable preference (Λ-CMD preference) is a preference satisfying that for

any non-maximal x there is a minimal gradient. Obviously, every Λ-CD preference is

Λ-CMD. Also, notice that any D ∈ Λ is Λ-CMD where at any point, the minimal gradient

ofD isD itself.
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To demonstrate the concept, consider the preferences on R2
+ represented by

U (x1,x2) = x1 + x2. These preferences are standard differentiable, but if Ψ is the set of

algebraic linear orderings, these preferences are not Ψ-CD since at the point (0,1) any

ordering ≥(x ,y ) where 0< y ≤ x is a gradient. However, the preferences are Ψ-CMD since

≥(1,1) is a minimal gradient at any point.

We will now see that continuous Ψ-CMD preferences might not be representable by

a standard differentiable function.

Claim 5. A continuous preference% onR2
+ may beΨ-CMD and yet not representable by a

differentiable u which has the property that b � a implies∇u (a ) ∙ (b −a )> 0.

Proof. Consider the following example, based on Dekel (1986) and Neilson (1991),

of a preference relation on X = R2
+ which is convex, continuous, and Ψ-CMD. The

example uses a function f : [1,2] → [1,2] built by Billingsley (1986, Example 31.1),

which is continuous, strictly monotonic, f (1) = 1, f (2) = 2, and has derivative 0 almost

everywhere. Define g : R+ → R+ as g (x ) = f (x ) if x ∈ [1,2] and g (x ) = x otherwise.

Let % be a monotonic preference on X for which (x ,0) ∼ (0, g (x )) for every x and an

indifference line connects any two such points; see Figure 3 for an illustration.

The preferences are continuous and Ψ-CMD. Suppose % is representable by a

differentiable u and denote by u i the partial derivative according to dimension i . Since

u (x ,0) = u (0, g (x )), u 1(x , 0) = u 2(0, g (x ))g ′(x ). Thus u 1(x ,0) = 0 almost everywhere in

[1,2]. But (x ′,0)� (x ,0) for all x ′ > x and yet∇u (x ,0) ∙ (x ′ −x ,0) = 0. That is, the gradient

of u does not point in the direction of improvement. 2

x1 2∙ ∙ ∙

f (x )
1

2

FIGURE 3: A continuous Ψ-CMD preference relation need not be representable by a dif-
ferentiable utility function with a gradient which points in the direction of improvement.
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8. Application: Competitive Equilibrium in a Bundles-of-Items Economy

In this section we apply our approach in order to shed light on an old problem: what, if

any, are the competitive equilibrium outcomes of an exchange economy with a finite set

of distinct and indivisible goods? Equilibrium existence results were achieved in the case

in which agents maximize the utility of the bundle minus the cost of the bundle when the

agents’ utilities satisfy the “gross substitutes” condition in Kelso and Crawford (1982).

Generalizations of this proposition admitting both substitutes and complements were

proven in Baldwin and Klemperer (2019) and Baldwin, Jagadeesan, Klemperer, and

Teytelboym (2023).

In a setting like ours, without utility for money, Babaioff, Nisan, and Talgam-

Cohen (2021) establish a second welfare theorem for the case of two agents with linear

ordinal preferences. We will show the validity of the second welfare theorem for any two-

agent economy with a finite set of distinct and indivisible goods under the assumption

that the agents’ preference relations are Ψ-minimal differentiable, which need not be

linear.

Consider a two-agent exchange economy where there is a finite set of items Z and

the space of bundles is X = 2Z , that is, all subsets of Z . There are two agents, 1 and 2,

and each of them has strict preferences over X , that is, �1 and �2. A pricing function

p : Z → R++ gives rise to a price for any bundle A ∈ X by p (A) =
∑

a∈A
p (a ). The ordering

Dp on X is the “more expensive” relation according to p , that is, A Dp B if p (A) ≥ p (B ).

Let Λ be the set of all strict �p (that is, there are no two equally priced bundles according

to the price vector p ). Since the orderings are strict and agents have strict preferences,

for �p to be a gradient at A, it is necessary and sufficient that B � A implies p (B )> p (A).

That is, condition (i) of the gradient implies condition (ii) of the gradient.

An equilibrium of this economy is a partition (A1, A2) of Z and a price vector p such

that for each agent i and each bundle B , if B �i Ai , then p (B ) > p (Ai ). That is, any

strictly preferred bundle is unaffordable.

Richter and Rubinstein (2015) showed that the second welfare theorem can fail

for Ψ-convex preferences (which were shown to be precisely the weakly monotonic

preferences). That is, there can be Pareto-efficient allocations which are not supported

as a linear price equilibrium. Table 2 shows such an example.
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%1 %2

a c a d
b d b c
ab c d

a d ,b c , c d ab , a c ,b d

TABLE 2: An economy with two Ψ-convex preferences for which a Pareto-efficient
allocation (in green) is not an equilibrium outcome.

The allocation (ab , c d ) is Pareto efficient, but it is not an equilibrium outcome: For

p to be linear equilibrium prices they must satisfy p (a ) > p (c ) (because a d �2 c d ),

p (c ) > p (b ) (because a c �1 ab ), and p (b ) > p (d ) > p (a ) for similar reasons. But that is

an impossible cycle.

The set of Ψ-CMD preferences includes Ψ (all linear preferences), but also much

more. For example, consider the preferences: ab c � ab � a c � b c � c � b � a � ;.

These preferences are not in Ψ because c � b and yet ab � a c . In this example, b is

more of a complement to a than c is. To verify that the preferences are Ψ-CMD: For any

doubleton, the pricing function p (a ) = 6, p (b ) = 5, p (c ) = 4 is a minimal gradient. For

any singleton, the pricing function p (a ) = 4, p (b ) = 5, p (c ) = 6 is a minimal gradient.

Every gradient is minimal at ;.

We will now show that for two-agent economies with Ψ-CMD preferences and

indivisible distinct goods, the second welfare theorem does hold.

Claim 6. Let �1,�2 be strict Ψ-CMD preferences. Then, any Pareto-efficient allocation is

a price equilibrium outcome.

Proof. Given a Pareto-efficient partition (A1, A2), for each i , denote a minimal gradient

of �i at Ai by �pi . We will show that each �pi constitutes an equilibrium ordering. We

call V a violating set for agent i if V �i Ai and p j (Ai )> p j (V ) (for j 6= i ). If a violating set

exists, then p j is not an equilibrium price ordering because agent i has a set V which he

prefers to Ai and which is cheaper by p j . If no violating set for agent i exists, then �p j

is an equilibrium ordering (agent j does not prefer any strictly p j -lower bundle because

�p j is a gradient of �j ).

Denote by SD(A, B ) the size of the symmetric difference between A and B . There is

no violating V for any i with SD(Ai , V ) = 1. If V = Ai \{b} for some b , then it is impossible

that V �i Ai , and if V = Ai ∪ {b} for some b , then it is impossible that p j (Ai ) > p j (V ). It
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remains to be shown that for any violation V for agent i with SD(Ai , V ) > 1, there is a

violation V ′ for agent j with SD(Ai , V )>SD(A j , V ′).

Suppose that V is a violation (without loss of generality) for agent 1, that is, V �1 A1

and p2(V ) < p2(A1). Since V �1 A1, Pareto optimality implies that A2 �2 V c . Since

p2(V )< p2(A1) and Z = A1 ∪A2 = V ∪V c , it holds that p2(V c )> p2(A2).

To construct a violation with smaller symmetric difference, we need our old friend

(Farkas’ lemma). To utilize it, we represent any bundle S with the indicator vector 1S .

As mentioned earlier, property (ii) of the gradient condition is automatically implied

by property (i) because preferences are strict. So, an ordering �q is a gradient of�2 at A2

if and only if q ∙1S >q ∙1A2 for every S ∈U�2(A2).

Since the preferences are Ψ-CMD and �p2 is a minimal gradient at A2, there is no

gradient �q at A2 with q (A2) > q (V c ). That is, for every positive vector q which satisfies

that q ∙ 1S > q ∙ 1A2 for all S ∈U�2(A2) it must hold that q ∙ 1V c ≥ q ∙ 1A2 . By Farkas’ lemma

the following holds:

1V c −1A2 ≥
∑

W∈U�2 (A2)

αW (1W −1A2) (*)

for some set of non-negative coefficients (αW ). Let U+(A2) consist of all W ∈U�2(A2) for

which the coefficients are positive.

Let W ∈U+(A2). If a ∈ V c ∩A2, then a can be added to W and (*) continues to hold.

Thus, without loss of generality A2 \W ⊆ A2 \V c . Next, if s ∈W \ A2, then s ∈ V c \ A2.

Therefore, W \A2 ⊆ V c \A2. Thus, SD(W, A2) = |A2 \W |+ |W \A2| ≤ |A2 \V c |+ |V c \A2|=

SD(V c , A2). Finally, since W �2 A2 �2 V c , it must be that W 6= V c , and thus SD(W, A2)<

SD(V c , A2).

So, all W ∈U+(A2) have a strictly smaller symmetric difference than V c and W �2 A2.

To see that at least one of them constitutes a violation, multiply inequality (*) by p1.

Notice that p1 ∙ (1V c − 1A2) = p1 ∙ (1A1 − 1V ) < 0 because V �1 A1 and �p1 is the gradient

of �1 at A1. Therefore, p1 ∙
�∑

W∈U+(A2)
αW (1W − 1A2)

�
< 0 and so there is at least one

W ∈U+(A2) such that p1(W ) < p1(A2). Thus, W is a violation for agent 2 with a smaller

symmetric difference than V . 2

Remark: Claim 6 also proves a stronger result: in a two-agent economy, if both

preferences are Ψ-differentiable at a Pareto-efficient allocation (but not necessarily

elsewhere) and monotonic, the second welfare theorem holds for that allocation.
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