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1. Introduction

It appears that many assumptions in economics are adopted for technical convenience
rather than because they express aspects of human nature. This observation provides
the motivation for replacing standard definitions of properties of preference relations
with formulations that admit a more natural interpretation. It also leads us to
seek formulations that extend the standard framework, but also apply to settings
where the underlying grand set is not Euclidean and without any reliance on utility
representations.

The approach we use originated in Richter and Rubinstein (2019), and was refined
in Richter and Rubinstein (2024). The grand set of alternatives X is enriched with a
collection A of primitive orderings on X, each representing a relevant consideration. We
introduced the concept of A-convex preferences: a preference relation on X is A-convex
if, for every element of X, there exists at least one ordering in A, called a critical ordering,
whose advancement is necessary for improvement.

As an example, we considered a reviewer of candidates who vary in their research
output, teaching ability, and charisma. If the preferences over candidates are A-convex,
then for any candidate x there is a criterion, say research, which has the property that for
a candidate to be superior to x, it is necessary for the candidate to be a better researcher.
However, research does not have to be the only such criterion; there could be multiple
orderings whose advancement is necessary for improvement.

This definition of convex preferences requires no algebraic structure on the space
of alternatives and it captures a sense in which convexity is related to the background
considerations used to form the preferences. In Richter and Rubinstein (2019), it was
shown that this definition encompasses the standard definition of convex preferences in
a Euclidean space by taking A to be the set, denoted W, of all “algebraic linear orderings”
(those represented by a utility function « - x for some non-zero vector a).

In this paper, we continue this research agenda by offering a new definition of
“convex-differentiable (CD) preferences.” The definition is related to the standard re-
quirement that preferences be represented by a differentiable and quasi-concave utility
function with non-zero gradient at any non-maximal point. Rubinstein (2012, pages 55—

56) suggested an alternative definition of differentiable preferences on Euclidean



spaces, which is formulated directly on the preferences and does not mention the word
“utility.” That definition was not equivalent to the standard one but captured much of
what differentiable preferences do (see also Renou and Schlag, 2014).

We now propose a definition of A-differentiable convex preferences without any
reliance on algebraic structure. The concept requires that for each alternative which
is not maximal, there is a unique primitive ordering in A which is both necessary for
improvement and sufficient for deterioration according to the preferences. We call this
ordering the gradient of the preferences at that alternative.

Notice that A-differentiability adds the following two requirements to A-convexity:
(i) moving down in the ordering harms preferences, and (ii) there is no other such
ordering. Returning to our previous example of ranking candidates, given some A-CD
preferences over the candidates, if research is the gradient at candidate x, then not
only is being a better researcher necessary for being judged above x, but also (i) any
candidate who is inferior to x in research is judged to be inferior and (ii) there are no
other such criteria.

As will be shown, these properties hold for the standard gradient in the Euclidean
setting. However, the standard gradient has another property, namely that small local
moves in the direction of the gradient are strictly improving, which we do not require.
Given that the space is abstract, often there is no notion of local moves.

Our interest in a new definition of differentiable preferences emerged as a purely
conceptual discussion. Accordingly, we study some basic properties of the concept and
characterize the set of A-differentiable preferences in a number of settings (both finite
and infinite). As a demonstration of its potential within a classical economic setting,
we consider an exchange economy with two agents and a finite set of indivisible and
distinct goods. It is well known that in such economies, the second welfare theorem can
fail (Shapley and Scarf, 1974). We let A consist of all linear pricing orderings and show
that for the two-agent exchange economy, if both agents’ preferences satisfy a variant of
A-differentiability, then the second welfare theorem holds (namely, any Pareto-optimal

allocation is also a competitive equilibrium outcome with linear prices).



2. Differentiable Convex Preferences

Let X be a non-empty set and let A be a set of primitive orderings (each being a
preference relation, namely, a complete, transitive, and reflexive binary relation) on X.
We denote a generic primitive ordering by > € A.

Given a preference relation - on X we say that > € A is critical at x if for every y,
it is necessary for y = x that y > x (where > and > are the strict parts of 7~ and >,
respectively). The relation 7~ is A-convex if for every x € X there exists at least one critical
ordering in A. Note that if > is critical at x, then any alternative that is weakly >-lower

must be weakly >~ -dispreferred.

For our definition of A-differentiable preferences, we refine the critical ordering
notion. An ordering > € A is a gradient of - at x if
(@) ify = x then y > x; and
(i) if x>y then x >~ y.

A preference relation - is A-convex-differentiable (A-CD) if for any non-maximal
element x € X there is a unique gradient V-(x) in A. Denote by D(A) the set of A-CD
preference relations. For any preference relation - and x € X, let U_(x) and L, (x)
denote the strict upper contour set and the strict lower contour set at x with respect
to 7Z. That is, a preference - is A-CD if for each non---maximal x there is a unique
> € A such that U.(x) 2 U.(x) and L(x) € L, (x). (Note that in the standard setting,
the gradient at a maximal point fails to indicate a direction of improvement because no
such direction exists. Likewise, in our setting, at a maximal alternative, there may be no

unique gradient.)

3. Properties of A-CD Preferences

(1) Existence of non-trivial A-CD preferences. Total indifference is trivially a A-CD
preference because every alternative is maximal. The existence of a non-constant A-
CD preference is not guaranteed. For example, if X has at least three elements and A
contains all strict orderings on X, then no non-constant preference relation is A-CD
since at any non-maximal element there are multiple gradients (including all primitive

orderings which rank that element at the bottom).



(2) Differentiability of primitive orderings. Natural candidates for A-CD preferences are
the members of A themselves. However, the above example demonstrates that members
of A need not be A-CD. A condition which guarantees that the primitive orderings are
themselves A-CD is non-nested upper contours: for all x, there are no two orderings
>, >’ € A such that U, (x) 2 U.(x) # 0. This condition is satisfied by the set of algebraic

primitive orderings on RX.

(3) A Pareto property. As noted in Richter and Rubinstein (2019), a weak Pareto property
holds even if the preferences - are just A-convex. If a > b for all > € A, then a - b since
otherwise there would be no critical ordering at a.

If 77 is A-CD, then a strict Pareto property also holds: if a > b for all > € A and b is
not ~~-maximal, then a > b. This is because if a is 7~-maximal, then we are done. If not,
then there is a gradient at a, and b is lower than a by that gradient, so by property (ii) of
the definition of A-CD preferences, it must be that a > b.

(4) A-CD preferences with a unique primitive ordering. If A = {>>} and > is strict, then
>> is the unique strict A-CD preference relation: for any preference relation, if b >~ a
and a > b, then there is no gradient at a. The only other A-CD preference relations are
those formed by creating indifferences at the top and continuing the strict preference
thereafter. (Suppose a ~ b are not ~-maximal and without loss of generality a > b.
Then, the gradient at a has to be I> and therefore a - b by property (ii) of the gradient, a

contradiction.)

(5) D(A,) and D(A») need not be nested when A, D A;. We have seen that if A; consists of
a single strict ordering it is A;-CD, but it is not A,-CD when A, contains all orderings. In
addition, if A; consists of a single strict ordering and A, also includes its opposite, then

both orderings in A, are A,-CD, but only the original one is A;-CD.



4. A-CD and Standard Differentiability

In the standard Euclidean setting, a preference relation is differentiable if it is repre-
sentable by a differentiable utility function. We will now show that the definition of
A-CD extends the standard definition on Euclidean spaces.

Let X =RX and ¥ be the set of algebraic linear orderings, i.e., ¥ = {>, |v € RK\ {0}}
where >, is the ordering represented by the function v - x. If the preference relation -
is monotonic, convex and represented by a differentiable utility function u with a non-
zero gradient at all x, then 77 is U-differentiable and the gradient ordering is >y,,().

As mentioned earlier, while the set of convex, continuous, and standard differen-
tiable preference relations is subsumed within our definition, the spirit of the definition
is notidentical. The standard definition also requires that x+ed > x for any d satisfying
d -Vu(x) > 0 and small enough € > 0, a requirement that has no analogy in our
definition.

While standard differentiable preferences need to be continuous, that is not the case
for U-CD preferences: there are W-CD, monotonic, and convex preferences that are not
continuous. Figure 1 provides an example of such a preference relation on R? which

even has a utility representation.

L, >~ ¢
Ul ) x ifx<o0
X,7)=
Y eV ifx>0
*
x=0

F1GURE 1: W-CD preferences that are not continuous.



5. Differentiability and Optimality

Given any primitive ordering > and an alternative e, define B(e,>) = {x € X|e > x}
to be a budget set. We refer to > as the expenditure ordering and x > y means that x is
(weakly) “more expensive” than y. We make the following analogy to a standard “budget
frontier” condition: given any expenditure ordering >, any 2~ -maximal alternative from
any budget set B(e,>) is >-maximal. The following claim is analogous to a standard

price theory result:

Claim 1. Let 77, be A-CD preferences that satisfy the budget frontier analogy and e € X be

not 7 -maximal. The alternative e is 7 -maximal in B(e,>) if and only if V-(e)=D.

Proof. Assume that I> is the gradient at e. If y >~ e, then y > e (by property (i) of the
gradient) and thus y ¢ B(e,>). Therefore, e is ~-maximal in the budget set B(e,>).

For the other direction, assume that e is ~~-maximal from B(e,>). Then, > is a
gradient at e by the budget frontier analogy, and since the preferences are A-CD it is

the only gradient at e. O

Claim 2 states the price-theory duality result according to which “expenditure mini-
mization” and “preference maximization” are “equivalent” when preferences are differ-
entiable. Let e € X be the individual’s “endowment.” Suppose that x* is 7~--maximal in
B(e,>) but not ;Z-maximal in X. Define U-(x*) = {y € X|y 7 x*} to be the weak upper

contour of x* and suppose that x* is >-minimal in U-(x*).

Claim 2. If 7~ is a A-CD preference relation satisfying the budget frontier analogy, then x*
and x** are (i) - -indifferent and (ii) > -indifferent.

Proof. (i) By the definition of x**, it holds that x** 7~ x*. Since e > x* > x*, it holds that
x* € B(e,>), and therefore x* 77 x**.

(ii) Since x* is >-minimal in U-(x*), it holds that x* I> x**. Since x* is 2Z-maximal from
B(e,>), itis also ~-maximal in B(x*,>). By Claim 1, the gradient at x* is >>. Thus, if x* >

x**, then x* = x**, contradicting x* ~ x**. Therefore, x* and x** must be >-indifferent. O



6. Examples

Example 1: Horizontal and vertical primitives on a finite grid. Let X = {0,1,2,3,4} x
{0,1,2,3,4} and A = {—, T}, where (a;,a,) — (b1, b) if a; > b, and (ai,a2) T (b1, b,)
if a, > b,. A A-CD preference relation with a unique maximum is illustrated in
Table 1: for each non-maximal alternative, there is a unique dimension in which
moving upwards is a strict improvement while moving upwards in the other dimension

preserves indifference.

4 [ 15 [ 4> [ 55 | 6> 8
3| 1- | 4> | 55 | 6> | 71
2 | 15 31 317 317 317
1 | 1— 21 21 21 21
0 01 01 01 071 01

0 1 2 3 4

TaBLE 1: Illustration of differentiability in a multidimensional discrete context.

To understand this, consider the point (0,0). By A-convexity, it cannot be that both
(a,0) = (0,0) and (0,b) > (0,0) because then there would be no critical ordering at
(0,0). By the weak Pareto property, the preferences are weakly monotonic. Accordingly,
without loss of generality, (0,0) ~ (a,0) for every a > 0 and therefore T is the gradient
at (0,0). It cannot be that (0,0) ~ (0, b) for every b since in that case — would also be
a gradient at (0,0) (which is unique by A-CD). Thus, there must be some b for which
(0,b) >~ (0,0). If (0,1) ~ (0,0), then the gradient at (0, 1) is T because (0, b) > (0,0) ~ (0, 1).
However in that case (0, 1) > (0,0) by property (ii) of the gradient, a contradiction. Thus,
by monotonicity, (0, b) > (0,0) for all b > 0. The result then follows by induction with the
bottom row removed.

To summarize, there is an “increasing” and “continuous” path from (0,0) to (4,4)
such that at every point on it, one direction preserves indifference and the other is strict
improvement.

The A-CD preferences have a natural meaning when the two orderings reflect the
preferences of two agents, 1 and 2. They are constructed sequentially. First one agent,
say i, is selected and all i,-worst alternatives are assigned to be indifferent and are

placed at the bottom of the ranking. Then, agent i, (who might be i,) is selected



and all i,-worst alternatives from the as-yet-unranked alternatives are assigned to be
indifferent, above those already ranked and below all other alternatives. And so on,
until all alternatives are ranked. In other words, the preferences can be thought of as an
outcome of a sequential procedure according to which at each stage, rather than stating
what is best, an agent is selected and specifies his worst alternatives, which are then
put above all previously ranked alternatives and below the rest of the alternatives. This
analysis and procedure would equally apply to other grand sets, such as X = {(x,y)|x €

{0,...,a},y €{0,...,a}, x +y < a} where there is no uniformly top-ranked alternative.

Example 2: Horizontal and vertical primitives in the plane. Let X = [0, 1]? and A consist
of two primitives: the horizontal (a — b if a; > b;) and the vertical (a T b if a, > b,)
on X. Claim 3 characterizes all A-CD preferences. It implies that the only continuous

monotonic A-CD preferences are the two primitive orderings themselves.

Claim 3. Let 7~ be a monotonic preference relation on X and let M denote the set of -
maximal points. Then =~ is A-CD if and only if X\ M can be partitioned into two sets U
and R such that:

(i) ifx € U, then any point weakly to the southeast of x is also in U; and thus ifx € R, then
any point weakly to the northwest of x is also in R;

(ii) any point (a,b) € U is on a horizontal indifference line to (1, b) denoted Hj,, and any
point(a,b) € R is on a vertical indifference line to (a, 1) denoted V,; and

(iii) for two horizontal indifference lines H, and H), the former is preferred if and only if
a > b, and likewise for any two vertical indifference lines V, and V,; to compare V, with
Hy, look at the point (a, b): ifitisin U, then V, = H, and if itisin R, then H, >~ V.

Figure 2 illustrates such a preference relation. The boundary between the regions U
and R is indicated in blue and the preferences are strictly increasing on this path. The
partition U, R indicates the gradient (if a € U the gradient is T, otherwise it is —), which
is displayed as arrows in the figure. Indifference lines are indicated by dashed lines and
they are ranked by where they touch the path. If two indifference lines touch the path at
the same point, then they are ranked by that point’s membership in U or R (in the figure,

the red dashed indifference lines at a point are preferred to the gray).



FIGURE 2: A-CD preferences in Example 2.

Proof. Obviously the preferences with the structure described in the claim are A-CD
with V- (x)=T1if x € U and V~(x) = — if x € R. In the other direction, consider a A-CD
preference relation 2. Let R={x e X\ M|V-(x)=—}and U= {x e X\ M|V-(x)=T}.
Notice that it is impossible for there to be points x € R and y € U such that y is weakly
up and to the left of x. If such an x and y existed, then by property (i) of the gradient,
y 2 x because V- (y) =T and likewise x 27 y because V- (x) = —. But by property (ii) of
the gradient, at least one preference must be strict. Therefore, if x € U, then any point
to the southeast of x must also be in U (and analogously for x € R).

For any x, if V-(x) = 1 then any point y to the right of x must be indifferent to x (it
must be that y - x by the weak Pareto property and it must be that y X x by V- (x)=1).
An analogous argument applies for any x with V- (x)=—.

Finally, suppose that (1,b) € U and (a, 1) € R. Without loss of generality, assume that
(a,b) € U. By monotonicity, it must be that (a,1) = (a,b). If (a,1) ~ (a,b), then all of
the points on the L-shaped broken line segment traced out by the points (1, b), (a,b),
and (a, 1) are indifferent. In this case — would also be a gradient at (a, b), contradicting

uniqueness. O

Example 3: Differentiability with single-peaked orderings. Let X = R. A preference
relation > is single peaked if there exists a peak € R such that a <b <peak<c<d
implies a <b <\peak™>c>d. We take A to be a set of single-peaked orderings. In
the political economy literature, single-peaked preferences are used to model a voter’s
preferences over social policies with peak representing the voter’s ideal policy. The
A-CD property can be thought of as a requirement on the aggregation of different

preferences into a social preference.
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We restrict the members of A to be balanced in the sense that for every x # peak
there is another unique point m(x) on the other side of the peak such that x and m(x)
are indifferent. Define m(peak)=peak.

We say that >,>,,...,>k are systematically ordered if for every x we have m,;(x) <
my(x) <---< mg(x)and in particular peak, < peak, <---< peakg.

In the following claim, attention is restricted to preferences that are continuous and
have at most one maximal point (in order to rule out trivialities such as preferences with

total indifference).

Claim 4. LetA={>,D>,,...,D>«} be a finite set of single-peaked orderings on R which are
balanced and systematically ordered.

(a) Assume K = 2. If = is a continuous preference relation on R that has at most one
maximal point, then -, is A-CD if and only if

(i) -, is single peaked with peak € [peak,, peak,]; and

(ii) 7 is balanced; if x < peak, then m,(x) < m(x) < my(x); and if x > peak, then
m(x) < m(x) < my(x).

(b) If K = 3, then no continuous A-CD preference with a unique maximal point exists.

Proof. (a) Suppose that 7 satisfies conditions (i) and (ii) and denote its unique maxi-
mum point by peak. Without loss of generality, it is sufficient to deal with x < peak.
By condition (ii), m(x) < my(x), and thus Us,(x) = (x, m2(x)) 2 (x, m(x)) = U-(x) and
Ly,(x) = (—00,x) U (my(x),00) € (—00,x)U(m(x),00) = L.(x), so B>, is a gradient at x.
To see that I>; is not a gradient at x, note that for x € [peak,,peak), peak - x but
x> peak. For x < peak;, we have m;(x) < m(x) by condition (ii), and so for any point
y such that m,(x) <y < m(x)itholds thaty ~x and x>, y.

Now suppose that ~ is A-CD, continuous, and has at most one peak. It must have a
maximum point (and is thus unique) since by the strict Pareto property the preferences
are strictly increasing to the left of pea k; and are strictly decreasing to the right of peak,
and by the continuity of the preferences they have a maximum in the closed interval
[peak;, peak,]. Denote the maximal point by peak.

For every x < peak the gradient must be >,. This is obvious for x € [peak,,peak)
while for x < peak;, it holds that U, (x) € U.,(x) and Ly, (x) D Ly,(x) and thus by the

uniqueness of the gradient, it must be >>,. Therefore, for every x < peak the preferences

11



are increasing. Analogously, the preferences are decreasing for x > peak and thus, the
preferences are single peaked. Furthermore, U.(x) C (x, m(x)) for every x < peak and
by the continuity of the preferences m(x) exists and m(x) < my(x). In order for >; not
to be a gradient at x, it must be that m(x) > m;(x). An analogous argument applies to

every point to the right of peak.

(b) Suppose that A = {I>,D,,...,D>} are systematically ordered single-peaked order-
ings. We now show that there are no A-CD preferences. Let x,y be ordered x < peak, <
peakg <y such that x ~, y. (Such a pair exists since take x < peak;. If m,(x) < peakg,
then choose y to the right of pea kg and its mirror must be to the left of peak;.)
Suppose that x 7~ y and x is not --maximal (since there is at most one 7~-maximal
alternative, if x is 7Z-maximal, start with a different pair x ~, y to begin with). By the
strict Pareto property, every point to the left of x is strictly 7--inferior to x and every
point to the right of y is strictly 7--inferior to y. Thus, U.(x) C (x,y) = Us,(x) and
L, (x) 2 (—00,x)U(y,00) = Ls,(x). Thus, I>, is a gradient at x. Since the primitives are
systematically ordered, it holds that U,(x) € Us,(x) and L,(x) 2 Ly,(x), and thus >3
is also a gradient at x. Similarly, if x X y then both >, and >, are gradients at y, a

contradiction. |

7. A Modified Definition (A-CMD)

For the rest of the paper we work with a variant of the notion of differentiable prefer-
ences. The motivation for this modification is that in some cases a preference relation
may have multiple gradients, but among these gradients, there is one which is tighter
than all the others in the sense that it has a smallest upper contour set. We will call such
a preference relation convex minimal differentiable, denoted CMD, and will refer to such
a gradient as a minimal gradient.

Formally, given a preference relation -, a gradient > € A at x is a minimal gradient
of 7~ at x if for every gradient >’ at x we have that y > x implies y >’ x. A A-convex-
minimal-differentiable preference (A-CMD preference) is a preference satisfying that for
any non-maximal x there is a minimal gradient. Obviously, every A-CD preference is
A-CMD. Also, notice that any > € A is A-CMD where at any point, the minimal gradient
of > is > itself.

12



To demonstrate the concept, consider the preferences on R? represented by
U(x1,x2) = x1 + x». These preferences are standard differentiable, but if W is the set of
algebraic linear orderings, these preferences are not W-CD since at the point (0, 1) any
ordering >(, ;) where 0 <y < x is a gradient. However, the preferences are ¥-CMD since
>(1,1) is a minimal gradient at any point.

We will now see that continuous W-CMD preferences might not be representable by

a standard differentiable function.

Claim 5. A continuous preference I, on R? may be ¥-CMD and yet not representable by a

differentiable u which has the property that b - a impliesV ,(a)-(b —a) > 0.

Proof. Consider the following example, based on Dekel (1986) and Neilson (1991),
of a preference relation on X = R2 which is convex, continuous, and ¥-CMD. The
example uses a function f : [1,2] — [1,2] built by Billingsley (1986, Example 31.1),
which is continuous, strictly monotonic, f(1) =1, f(2) =2, and has derivative 0 almost
everywhere. Define g : Ry — R, as g(x) = f(x) if x € [1,2] and g(x) = x otherwise.
Let ~~ be a monotonic preference on X for which (x,0) ~ (0, g(x)) for every x and an
indifference line connects any two such points; see Figure 3 for an illustration.

The preferences are continuous and W-CMD. Suppose 77 is representable by a
differentiable u and denote by u; the partial derivative according to dimension i. Since
u(x,0) = u(0, g(x)), ui(x,0) = u,(0, g(x))g’(x). Thus u;(x,0) = 0 almost everywhere in
[1,2]. But (x’,0) > (x,0) for all x’ > x and yet V,(x,0)-(x’ — x,0) = 0. That is, the gradient

of u does not point in the direction of improvement. O
2
J(x)
1
1 cee X 2 ’

FIGURE 3: A continuous ¥-CMD preference relation need not be representable by a dif-
ferentiable utility function with a gradient which points in the direction of improvement.
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8. Application: Competitive Equilibrium in a Bundles-of-Items Economy

In this section we apply our approach in order to shed light on an old problem: what, if
any, are the competitive equilibrium outcomes of an exchange economy with a finite set
of distinct and indivisible goods? Equilibrium existence results were achieved in the case
in which agents maximize the utility of the bundle minus the cost of the bundle when the
agents’ utilities satisfy the “gross substitutes” condition in Kelso and Crawford (1982).
Generalizations of this proposition admitting both substitutes and complements were
proven in Baldwin and Klemperer (2019) and Baldwin, Jagadeesan, Klemperer, and
Teytelboym (2023).

In a setting like ours, without utility for money, Babaioff, Nisan, and Talgam-
Cohen (2021) establish a second welfare theorem for the case of two agents with linear
ordinal preferences. We will show the validity of the second welfare theorem for any two-
agent economy with a finite set of distinct and indivisible goods under the assumption
that the agents’ preference relations are W-minimal differentiable, which need not be
linear.

Consider a two-agent exchange economy where there is a finite set of items Z and
the space of bundles is X = 24, that is, all subsets of Z. There are two agents, 1 and 2,
and each of them has strict preferences over X, that is, -; and =,. A pricing function

p :Z — R, gives rise to a price for any bundle A € X by p(A) = )_ p(a). The ordering
acA

>, on X is the “more expensive” relation according to p, thatis, A>, B if p(A) > p(B).
Let A be the set of all strict >, (that is, there are no two equally priced bundles according
to the price vector p). Since the orderings are strict and agents have strict preferences,
for >, to be a gradient at 4, it is necessary and sufficient that B =~ A implies p(B) > p(A).
That is, condition (i) of the gradient implies condition (ii) of the gradient.

An equilibrium of this economy is a partition (A;,A;) of Z and a price vector p such
that for each agent i and each bundle B, if B ~; A;, then p(B) > p(A;). That is, any
strictly preferred bundle is unaffordable.

Richter and Rubinstein (2015) showed that the second welfare theorem can fail
for W-convex preferences (which were shown to be precisely the weakly monotonic
preferences). That is, there can be Pareto-efficient allocations which are not supported

as a linear price equilibrium. Table 2 shows such an example.
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- | -

1 22
ac ad
bd bc
ab cd
ad,bc,cd ab,ac,bd

TABLE 2: An economy with two W-convex preferences for which a Pareto-efficient
allocation (in green) is not an equilibrium outcome.

The allocation (ab, cd) is Pareto efficient, but it is not an equilibrium outcome: For
p to be linear equilibrium prices they must satisfy p(a) > p(c) (because ad >, cd),
p(c) > p(b) (because ac - ab), and p(b) > p(d) > p(a) for similar reasons. But that is
an impossible cycle.

The set of ¥-CMD preferences includes W (all linear preferences), but also much
more. For example, consider the preferences: abc = ab = ac = bc = c > b = a > 0.
These preferences are not in ¥ because ¢ >~ b and yet ab > ac. In this example, b is
more of a complement to a than c is. To verify that the preferences are ¥-CMD: For any
doubleton, the pricing function p(a) =6, p(b) =5, p(c) = 4 is a minimal gradient. For
any singleton, the pricing function p(a) = 4, p(b) =5, p(c) = 6 is a minimal gradient.
Every gradient is minimal at 0.

We will now show that for two-agent economies with W-CMD preferences and

indivisible distinct goods, the second welfare theorem does hold.

Claim 6. Let =, >, be strict W-CMD preferences. Then, any Pareto-efficient allocation is

a price equilibrium outcome.

Proof. Given a Pareto-efficient partition (A,, A,), for each i, denote a minimal gradient
of =; at A; by >,,,. We will show that each >, constitutes an equilibrium ordering. We
call V a violating set for agent i if V ~; A; and p;(A;) > p;(V) (for j # i). If a violating set
exists, then p; is not an equilibrium price ordering because agent i has a set V which he
prefers to A; and which is cheaper by p;. If no violating set for agent i exists, then >,
is an equilibrium ordering (agent j does not prefer any strictly p;-lower bundle because
>, is a gradient of >-;).

Denote by SD(A, B) the size of the symmetric difference between A and B. There is
no violating V for any i with SD(A;, V) =1. If V= A;\{b} for some b, then it is impossible
that V =; A;, and if V = A; U{b} for some b, then it is impossible that p;(A;) > p;(V). It
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remains to be shown that for any violation V for agent i with SD(A;, V) > 1, there is a
violation V” for agent j with SD(A;, V) >SD(A;, V7).

Suppose that V is a violation (without loss of generality) for agent 1, thatis, V >=; A,
and p,(V) < p2(A;). Since V >=; A, Pareto optimality implies that A, >, V¢. Since
p2(V)< pa(A1)and Z=A, UA, = VU V¢, it holds that p,(V¢) > p,(A»).

To construct a violation with smaller symmetric difference, we need our old friend
(Farkas’ lemma). To utilize it, we represent any bundle S with the indicator vector 1.

As mentioned earlier, property (ii) of the gradient condition is automatically implied
by property (i) because preferences are strict. So, an ordering > is a gradient of =, at A,
ifandonlyif g- 15> g - 1,4, for every S € U.,(A»).

Since the preferences are ¥-CMD and >, is a minimal gradient at A,, there is no
gradient >, at A, with g(A,) > q(V*). That is, for every positive vector g which satisfies
thatg-1s>¢q-1,, forall S € U.,(A,) it must hold that g - 1y« > g - 1,,. By Farkas’ lemma
the following holds:

Lye — 1y, = Z aw(lw —14,) *)

W€U>2(A2)

for some set of non-negative coefficients (ay ). Let U*(A;) consist of all W € U,_,(A,) for
which the coefficients are positive.

Let We U*(A,). Ifa € V¢ N A,, then a can be added to W and (*) continues to hold.
Thus, without loss of generality A, \ W C A, \ V¢. Next, if s € W\ A,, then s € V¢ \ A,.
Therefore, W\ A, C V¢\ A,. Thus, SD(W,A,) = A\ W[+ W\ Ay <|A,\ VE|+|VE\ Ay =
SD(V¢, A,). Finally, since W =, A, =, V¢, it must be that W # V¢, and thus SD(W, A,) <
SD(V¢, A,).

So, all W € U*(A;) have a strictly smaller symmetric difference than V¢ and W >, A,.
To see that at least one of them constitutes a violation, multiply inequality (*) by p;.
Notice that p; - (1ye —14,) = p1-(14, —1v) < 0 because V =; A, and >, is the gradient
of =, at A;. Therefore, p; - (ZW€U+(A2)(ZW(1W —14,)) < 0 and so there is at least one
W € U*(A;) such that p;(W) < p1(A,). Thus, W is a violation for agent 2 with a smaller
symmetric difference than V. O

Remark: Claim 6 also proves a stronger result: in a two-agent economy, if both
preferences are W-differentiable at a Pareto-efficient allocation (but not necessarily

elsewhere) and monotonic, the second welfare theorem holds for that allocation.
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