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Abstract

A firm wishes to persuade a patient to take a drug by making either

positive statements like “if you take our drug, you will be cured”,

or negative statements like “anyone who was not cured did not take

our drug”. Patients are neither Bayesian nor strategic: They use a

decision procedure based on sampling past cases. We characterize

the firm’s optimal statement, and analyze competition between firms

making either positive statements about themselves or negative state-

ments about their rivals. The model highlights that logically equiva-

lent statements can differ in effectiveness and identifies circumstances

favoring negative ads over positive ones.

∗We are indebted to Áron Tóbiás who carefully went through the draft of the paper
and saved us from many mistakes. Thanks also to Ran Eilat, Michael Richter and Rani
Spiegler for their comments.
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1 Introduction

A drug manufacturer promises that its drug will cure your disease. A personal

trainer warns that if you don’t exercise daily your health will deteriorate. A

local auto mechanic claims that any neighbour who had an accident did not

use his services.

In the above examples, a party is making a statement in order to persuade

you to take a particular action. The statement describes a relation between

an action and a consequence, i.e., how one implies the other. If you believe

the statement is true, you will take the action; otherwise, you won’t. How

do we assess such statements?

In contrast to what is usually assumed in economic models, we typically

don’t have a prior on the validity of the statement, and furthermore, the

ability to think strategically is limited. A common practice is to sample a

small number of relevant past cases, i.e., to collect data on individuals who

faced the same dilemma in the past including their decision (e.g., whether

they took the drug, exercised, or used the local auto mechanic) and the

subsequent outcomes (e.g., whether they were cured, their health, and any

involvement of their car in accidents). Based on this limited data, one assesses

the validity of the statement and comes to a decision.

The leading example throughout the paper is a firm that offers a drug to

cure a certain disease. Two exogenous parameters capture the effectiveness

of the drug: the probability p that a patient will be cured if he takes the

drug, and the probability q that he will get well without it. Both parameters

are known to the firm but not to the patients. The firm can make one of four

statements which all have the form A → B : two positive ones - “taking the

drug will cure you” and “patients who were cured took the drug” - and two

negative ones - “not taking the drug will result in no cure” and “people who

were not cured, had not taken the drug”.

Modeling the process by which patients assess the validity of a statement

requires specifying the following:
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(i) On what information does a patient base his assessment? We focus on

two types of data collection procedures which are used by patients to search

past cases, where it is known whether a patient took the drug and whether he

was cured. One involves sampling a finite number of past cases while another

involves sequentially sampling past cases until a relevant case is identified.

(ii) What data do patients find relevant when assessing a statement of the

form A → B? We assume that a refutation (a case where A is true and B is

false) and a confirmation (a case where both A and B are true) are relevant

(in Section 4 another type of case may also be relevant).

(iii) How are the relevant cases that are sampled used to determine the deci-

sion? We assume that a refutation leads to rejection of the firm’s drug while

a confirmation without a refutation persuades patients to take the drug.

The question of which information is relevant in assessing the validity of

an implication statement is related to the Wason Selection Task experiment

(Wason, 1960).1 The title “Wasonian Persuasion” is a nod to this experiment.

In Wason’s experiment (and its variations) subjects exhibit a tendency to

regard information as relevant if it confirms the statement and not only if it

falsifies it (see Wason and Johnson-Laird, 1972, and Klayman and Ha, 1987).

This is likely because the everyday meaning of an implication statement “if

A then B” differs from its “logical” definition. When we say “anyone who

takes the drug will be cured”, we typically refer to the population in general

(unlike in Wason’s experiment) and we mean to say that:

(i) the drug always cures;

(ii) there are cases of patients who took the drug and were cured; and

(iii) anyone who does not take the drug is significantly less likely to be cured.

1In this experiment, subjects are asked: “Suppose each card has a number on one side,
and a letter on the other. There are four cards in front of you: 4, U, 3, M. Which cards
must you turn over in order to test the truth of the following proposition: If a card has a
vowel on one side, then it has an even number on the other?” By the rules of logic, the
statement is true if it cannot be refuted, which requires turning over the cards U and 3.
However, the modal answer tends to be U and 4, although turning over 4 can only confirm
the statement.
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The primitives of the model in Sections 3 and 4 are the success rates p

(as a result of taking the drug) and q (as a result of not taking the drug),

as well as the specification of a choice procedure used by all patients. Our

equilibrium concept is based on the following idea. Fix a firm’s statement

and a patients’ choice procedure. Each fraction of patients who take the

drug induces a distribution of cases and a probability that a new patient

who samples from this distribution will buy the drug. An outcome is a

fraction of patients who take the drug, which is equal to the probability that

a new patient will take the drug. An outcome is stable if it is robust to small

perturbations.

It will be shown that the notion of a stable outcome is well-defined in

our model and therefore the firm’s optimization problem is the following:

Anticipating the stable outcome for each statement, the firm chooses one

that maximizes the proportion of patients who use its drug.

The main contribution of the paper is the introduction of a new form of

persuasion, in which a speaker makes a statement, which is not perceived

as an informative signal, but rather is evaluated by individuals in a non-

Bayesian way based on data they collect.

The model allows us to draw conclusions of the following types:

(i). The effectiveness of a statement “if A then B” depends on the proce-

dure that individuals use to assess its validity. In particular, two logically

equivalent statements, “if A then B” and “if not B, then not A”, may have

different persuasive appeal.

(ii). There are conditions under which positive statements are more (less)

effective than negative statements.

(iii). There are conditions under which statements in which the antecedent

is an action are more (less) persuasive than those in which the antecedent is

a consequence.

(iv). Some procedures are better at reducing the likelihood of falling prey

to imposters (i.e., when p < q), or increasing the chances of taking helpful

actions (p > q).
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The framework can also address questions regarding competing rhetoric

(a debate) where two firms are trying to persuade a consumer, who will

choose one of their products. Anticipating that patients will follow a choice

procedure similar to those examined in Sections 3 and 4, each firm makes

a statement that aims to maximize its market share. The question is then

what type of statements will arise in equilibrium? Statements that defame

the rival or statements that praise one’s own product?

Section 5 models this situation as a strategic zero-sum game between two

firms where one (the “superior” firm) offers a drug with a higher ex-ante

chance of curing. We show that in equilibrium the support of each firm’s

strategy includes both a positive and a negative statement.

In particular, when the firms offer two “opposing” drug treatments (i.e.,

only one of the drugs can cure a patient, and its identity is independent across

patients), the value of the game for the superior firm is just slightly below

its success rate. If the inferior firm offers a useless drug (i.e. zero chance of

it curing a patient) then in any equilibrium that firm always advertises using

a negative statement about the rival and obtains a positive market share.

This paper relates to several strands of literature, and the final section

provides an extensive discussion of this relation.

2 The basic model

A drug firm wishes to persuade a patient to use its product. The effect of the

drug is binary: either it cures a patient or it does not. The truth (the state

of the world) is such that a patient will be cured with probability 0 < p < 1

if he takes the drug and with probability 0.5 ≤ q < 1 if he does not.2 The

effectiveness of the drug and the default is independent across patients. The

probabilities p and q are known to the firm but not to the patients.

2The assumption that q ≥ 0.5 is made only for simplicity of the analysis.
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The firm makes a statement that if true would persuade the patient to

take the drug. All statements are of the form A→B which is interpreted as:

“if A is true then B must be true”. We restrict attention to four statements:

[Y ] → [+], [+] → [Y ], [N ] → [−], and [−] → [N ], where [Y ] and [N ] mean

“taking the drug” and “not taking the drug”, respectively, while [+] and [−]

mean “being cured” and “not being cured”, respectively. E.g., the statement

[+]→ [Y ] is understood as “everyone who was cured took the drug”.

The patients are not strategic - they don’t take into account the firm’s

strategy when evaluating the truth of a statement. Furthermore, patients

are not Bayesian and do not have a prior on their chance of being cured with

the drug and without it. Rather, each patient uses a procedure that assesses

the truth of the firm’s statement that leads to either taking the drug or not.

Several variants of the model are considered, each of which is character-

ized by a different choice procedure that all patients use. Each procedure

consists of observing past cases of patients who considered taking the drug,

and applying a rule that evaluates the truth of the statement in light of the

observed cases. A case has two components: whether the drug was taken

[(Y) or (N)], and whether the patient was cured [(+) or (−)]. The cases are

drawn from the population of cases. Given that a proportion b of the patients

took the drug, the following table presents the case distribution:

case content frequency of case

Y + took the drug and were cured α = bp

Y − took the drug and were not cured β = b(1 − p)

N+ did not take the drug and were cured γ = (1 − b)q

N− did not take the drug and were not cured δ = (1 − b)(1 − q)

Table 1: The cases and their frequencies.

Given a statement A→B, we say that a case is a confirmation if both A

and B are true and is a refutation if A is true and B is false. Given a distri-

bution of cases and a statement s, denote the probability of a confirmation

as cs(b) and the probability of a refutation as rs(b).
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Given a choice procedure, each statement s and a case distribution in-

duce a probability of acceptance denoted by Δs(b) (which depends on the

procedure and the parameters p and q). For ease of exposition, we often omit

the subscript s.

Given a procedure, an outcome of the statement s is a proportion b∗ of

patients who buy the drug, such that Δs(b
∗) = b∗. An outcome is stable if

a small deviation from it triggers a push back to the outcome. Formally,

an outcome b∗ is stable if there is an ε > 0 such that Δs(b) > b for any

b∗ − ε < b < b∗ and Δs(b) < b for any b∗ + ε > b > b∗.

Each procedure is shown to induce a unique stable outcome for each

statement s denoted by b∗s. We investigate the firm’s problem of finding a

statement that leads to the highest stable outcome. Such a statement is

referred to as optimal.

Comment: One question that arises is whether holding fixed the stable out-

come b∗ induced by an optimal statement s∗, the firm would prefer to deviate

to a different statement s, i.e. Δs(b
∗) > Δs∗(b

∗). If not, the optimal state-

ment is said to be locally stable. In our setup, any optimal stable outcome is

also locally stable. This is because for any statement, there exists a unique

stable outcome, any acceptance function is analytical and its first derivative

is equal to 1 at only finitely many points (and hence induces finitely many

outcomes). Therefore, if s∗ is optimal and there exists another statement

s such that Δs(b
∗) > Δs∗(b

∗) = b∗, then the unique stable outcome of s is

above b∗, either at a point where Δs crosses the main diagonal from above

to below or at the point 1. But, this contradicts the optimality of s∗.

3 Finite samples

This section considers a procedure P1 in which a patient samples n cases

and takes the drug after receiving statement s if the sample contains at least

one confirmation and no refutations. The induced acceptance function is

Δs(b) = (1 − rs(b))
n − (1 − cs(b) − rs(b))

n.
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Notice that this procedure attributes significant weight to finding a refu-

tation of the statement. This reflects the interpretation of a statement as

a universal rule and thus even one refutation invalidates it, which seems to

be intuitively appealing when the sample size is small. Note also that two

logically equivalent statements (i.e., A → B and −B →−A) do not induce

the same acceptance functions.

Proposition 1: Assume that patients use P1. Then, for any statement there

is a unique stable outcome.

For n = 1, the statements [−]→ [N ] and [N ]→ [−] are optimal.

For n ≥ 2, there is p̂ such that for p > p̂ the optimal statement is [Y ]→ [+]

and for p < p̂ the optimal statement is [−]→ [N ].

According to this result, when the firm’s drug is relatively effective (and a

patient samples at least two cases) the firm’s optimal statement argues that

its product guarantees a cure. When the drug is relatively ineffective, the

firm opts for the intimidating statement that all those who were not cured

did not use the drug.

The following figure illustrates the

proposition by depicting the sta-

ble outcomes (as a function of p)

induced by each statement when

n = 2 and q = 1/2.
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Stable outcomes of P1: n = 2, q = 1/2

[Y ]→ [+]
[+]→ [Y ]
[N ]→ [−]
[−]→ [N ]

Proof: In the case of n = 1, Δs(b) = cs(b). The two positive statements

are equivalent, Δ[Y ]→[+](b) = bp and the unique stable outcome is 0. The

two negative statements are equivalent, Δ [N ]→[−](b) = (1 − b)(1 − q) and the

unique stable outcome is 1−q
2−q

> 0. It follows that the two negative statements

are optimal. Henceforth, we let n > 1.
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In what follows we use two lemmas, which are proven in Appendix A:

Lemma 1: For any statement s, each of the equations Δ′
s(b) = 0 and

Δ′′
s(b) = 0 has at most one solution in [0, 1].

Lemma 2: For any two statements s and s′, which have the same confirma-

tion case (refutation case), Δs(b) > Δs′(b) iff rs(b) < rs′(b) (cs(b) > cs′(b))

for all b ∈ (0, 1).

We next show that each statement has a unique stable outcome and

characterize it.

Lemma [+]→ [Y ]: The statement [+]→ [Y ] induces the unique stable out-

come, b = 0.

Proof: For this statement, c[+]→[Y ](b) = α = bp and r[+]→[Y ](b) = γ = (1−b)q.

The acceptance function Δ[+]→[Y ](b) = (1− γ)n − (1− γ − α)n gets the value

0 at 0 and the value 1 − (1 − p)n < 1 at 1. The function Δ is convex

since Δ′′(b) = n(n − 1)[q2(1 − γ)n−2 − (p − q)2(1 − α − γ)n−2] > 0. Since

Δ′(0) = n[q(1− q)n−1 + (p− q)(1− q)n−1] = pn(1− q)n−1 < 1, the statement

induces a unique outcome b = 0 which is stable. �

Lemma [N ] → [−]: The statement [N ] → [−] has a unique stable outcome

which is below (1−q)2

1−q+q2 .

Proof: The acceptance function Δ[N ]→[−](b) = (1− (1− b)q)n − (b)n satisfies

Δ′(b) = nq(1 − q + bq)n−1 − n(b)n−1, Δ(0) = (1 − q)n > 0 and Δ(1) = 0.

Therefore, there must be an outcome which is stable.

By Lemma 1, there is at most one b ∈ [0, 1] where Δ′(b) = 0. Since

Δ′(0) > 0 and Δ(1) = 0 the function has a unique maximum point in [0 , 1].

It is attained when q(1−γ)n−1 = bn−1 and at that point Δ(b) = 1−γ
q

bn−1−bn =

(1 − q)(1 − (1 − b)q)n−1. Since the last expression is decreasing in n, any

outcome is at most the solution of (1 − q)(1 − (1 − b)q) = b which is (1−q)2

1−q+q2

and is at most 1/3 for any q ≥ 1/2.

In order to show that there is a unique stable outcome, we verify that in

the interval [0, 1/3] the derivative Δ′(b) = nq(1 − q + bq)n−1 − nbn−1 < 1.
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Fixing a value of b we look for q ∈ [1/2, 1] that maximizes Δ′(b). If this

maximizer is q = 1/2 then Δ′(b) ≤ n1
2
(2/3)n−1 < 1 for all n. If this maximizer

is q = 1, then Δ′(b) = 0. Otherwise, there are two candidates for interior q

that maximizes Δ′(b) (points where the derivative of Δ′(b) with respect to q

vanishes): q = 1
1−b

and q = 1
n(1−b)

. In the first case Δ′(b) ≤ 0. In the second

case Δ′(b) =
(1− 1

n
)n−1

1−b
− nbn−1 ≤ 3

2
(1 − 1

n
)n−1< 1 for all n ≥ 2. �

Lemma [−]→ [N ]: The statement [−]→ [N ] has a unique stable outcome.

Proof: The function Δ[−]→[N ](b) = (1 − β)n − (1 − β − δ)n satisfies Δ(0) =

1 − qn > 0 and Δ(1) = 0. It is decreasing in b (since the polynomial xn

is convex, 1 − β is decreasing in b and δ is decreasing in b). Therefore, the

statement induces a unique outcome which is stable. �

Lemma [Y ]→ [+]: The statement [Y ]→ [+] induces a unique stable outcome

which is b = 0 for n ≤ 1/p and is inside (0, 1] for n > 1/p.

Proof: The function Δ[Y ]→[+](b) = (1 − β)n − (1 − b)n does not depend on

q and satisfies Δ(0) = 0, Δ(1) = pn and Δ′(0) = −n(1 − p) + n = np. In

addition, Δ′′(b) = n(n − 1)[(1 − p)2(1 − β)n−2 − (1 − b)n−2] is negative at 0

and equal to zero at most once when 1−b
1−β

= (1 − p)2/(n−2).

If Δ′(0) = np ≤ 1, the outcome b = 0 is stable. If there is an additional

outcome b′, then the first derivative is above 1 in a region below b′, and since

Δ′ is decreasing near 0 there is an inflection point in (0, b′). Since Δ(1) < 1

there is a region above b′ where the derivative is below 1 and therefore there

is an additional inflection point above b′, contradicting Lemma 1.

For similar reasons, if np > 1 then the outcome b = 0 is unstable and

there is exactly one positive outcome which is stable. �

Remainder of the proof: We now show that b∗[−]→[N ] ≥ b∗[N ]→[−]. The two

statements share the confirmation case, and therefore, by Lemma 2, there

is a unique intersection between the corresponding acceptance functions at

b′ = q
q+1−p

where the refutation rates are equal. By Lemma [N ] → [−],
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b∗[N ]→[−] ≥
(1−q)2

1−q+q2 . Since the acceptance function Δ[−]→[N ] is decreasing and

Δ[N ]→[−](0) = (1 − q)n < Δ[−]→[N ](0) = 1 − qn it suffices to verify that b′ ≥
(1−q)2

1−q+q2 which is true for all q ≥ 1/2.

Since [+] → [Y ] induces the stable outcome 0, it remains to show that

there is p̂ such that [−]→ [N ] is optimal below it and [Y ]→ [+] is optimal

above it. The statements share the refutation case (Y −) and therefore by

Lemma 2, Δ[−]→[N ](b) ≥ Δ[Y ]→[+](b) iff δ, the confirmation rate of [−]→ [N ],

is at least as high as α, the confirmation rate of [Y ]→ [+], i.e., iff b ≤ 1−q
1+p−q

.

Note also that the expression Δ[Y ]→[+](b) = (1 − b(1 − p))n − (1 − b)n is

increasing in p and thus b∗[Y ]→[+] is increasing in p from 0 (at p = 0) to 1 (at

p = 1).

Since Δ[−]→[N ] is decreasing, the statement [−]→ [N ] is optimal for any

p satisfying b∗[Y ]→[+] < 1−q
1+p−q

and the statement [Y ]→ [+] is optimal for any

p satisfying b∗[Y ]→[+] > 1−q
1+p−q

. Since the stable outcome of [Y ] → [+] is an

increasing function of p, there is p̂ that splits the two regions. �

4 Searching until a relevant case is found

This section analyses three procedures in which a patient searches through

past cases until he finds a “relevant” one. A key question is which cases are

considered to be relevant for a statement of the form A → B. Clearly, the

confirmation and the refutation cases are relevant.

In procedure P2, a patient considers only those two cases to be relevant.

In the other two procedures, a patient also makes inferences from an addi-

tional type of case. In P3, a case is relevant when the antecedent is false and

the consequence is true. Such a case argues against taking the drug, because

it is interpreted as evidence that the consequence is not necessarily caused

by the antecedent. In P4, a case is relevant when both the antecedent and

the consequence are false. Such a case argues in favor of taking the drug,

because it is interpreted as evidence that the antecedent is indeed necessary

to generate the consequence.
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Table 2 summarizes the patients’ behavior under each of the procedures.

A→B P2 P3 P4

T T Y Y Y

T F N N N

F T Pass N Pass

F F Pass Pass Y

Table 2: The sequential procedures.

All acceptance functions in this section have the form Δs(b) = k1b+k2

k3b+k4
. Lemma

3, proven in Appendix A, establishes that such an acceptance function has a

unique stable outcome:

Lemma 3: If Δs(b) = k1b+k2

k3b+k4
, where both k1b+k2 and k3b+k4 receive values

between 0 and 1 and k3 > 0, then there is a unique stable outcome.

In P2, a patient sequentially searches through cases and stops as soon as

he observes either a confirmation or a refutation. The acceptance function

for P2 is Δs(b) = cs(b)
cs(b)+rs(b)

and by Lemma 3, it has a unique stable outcome.

Proposition 2: Assume that all patients use P2. The optimal statement

and the unique stable outcome depend on the value of p as follows:

Region I (p ∈ [q, 1]): [+]→ [Y ] and b = 1.

Region II (p ∈ [p̂, q]): [Y ]→ [+] and b = p.

Region III (p ∈ [1 − q2

1−q
, p̂]): [−]→ [N ] and b = 1/(1 +

√
1−p
1−q

).

Region IV (p ∈ [0, 1 − q2

1−q
]): [N ]→ [−] and b = 1 − q.

where p̂ is the unique solution of p̂ = 1

1+
√

1−p̂
1−q

in (0, 1).
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Under P2, every statement is optimal for

some values of p and q. For relatively high

p, the optimal statement is positive while

for relatively low p it is negative. The

warning that not taking the drug guaran-

tees not being cured is optimal only for

very low p. Its logically equivalent positive

statement, namely that you will only be

cured if you take the drug, is optimal only

for p ≥ q. The graph (taking q = 0.55)

illustrates the proposition.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p

b

Stable outcomes of P2: q = 0.55

[Y ]→ [+]
[+]→ [Y ]
[N ]→ [−]
[−]→ [N ]

Proof: The proposition follows from the following observations:

The statement [+] → [Y ] is optimal for p > q (region I) since Δ[+]→[Y ](b) =
bp

bp+(1−b)q
> b in (0, 1), thus inducing the stable outcome 1. If p < q, then

Δ[+]→[Y ](b) < b in (0, 1), thus inducing the stable outcome 0.

Δ[Y ]→[+](b) = p, thus inducing the stable outcome p.

Δ[N ]→[−](b) = 1 − q, thus inducing the stable outcome 1 − q.

Δ[−]→[N ](b) = (1−b)(1−q)
b(1−p)+(1−b)(1−q)

satisfies Δ(0) = 1 and Δ(1) = 0 and its stable

outcome is 1

1+
√

1−p
1−q

.

The condition in region IV (p ≤ 1 − q2

1−q
), is equivalent to the inequality

b∗[−]→[N ](p) ≤ b∗[N ]→[−](p). In this region, [N ]→ [−] is also better than [Y ]→ [+]

since p ≤ 1 − q2

1−q
≤ 1 − q (for any q ≥ 1/2).

When p ∈ [1− q2

1−q
, q] (given that q ≥ 1/2, this interval is not empty) the

candidates for optimality are [Y ]→ [+] (with the outcome p) and [N ]→ [−]

(with the outcome 1

1+
√

1−p
1−q

). In region III, the statement [−]→ [N ] is optimal

up to p̂ = 1

1+
√

1−p̂
1−q

and [Y ]→ [+] is optimal in region II, above p̂. �

Under procedure P3 a patient stops searching and takes the drug as soon

as he finds a confirmation. He stops and does not take the drug, as soon as he
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finds a refutation or a case where the antecedent of the statement is false but

the consequence is true. The induced acceptance function for a statement

s is Δs(b) = cs(b)
1−ns(b)

, where ns(b) is the probability of a case in which both

the antecedent and the consequence of s are false. By Lemma 3, it induces a

unique stable outcome. Under this procedure, there is no difference between

any two statements A → B and B → A and hence it is sufficient to compare

only [Y ]→ [+] and [N ]→ [−]. The next proposition, proven in Appendix A,

characterizes the optimal statement for different values of p :

Proposition 3: If all patients use procedure P3, then there is p̂ such that for

any p < p̂ the statement [N ] → [−] is optimal and for p > p̂ the statement

[Y ] → [+] is optimal. The stable outcomes of the optimal statement are

interior for all p < 1.

Once again the positive statement is opti-

mal in the top range of p and the negative

statement is optimal in the bottom range.

The proposition is illustrated in the figure

for q = 0.6.
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Stable outcomes of P3: q = 0.6

[Y ] → [+]
[N ] → [−]

Finally, under procedure P4 a patient stops searching and takes the drug

as soon as he finds either a confirmation of the statement or a case in which

both the antecedent and consequence are false. He stops searching and does

not take the drug as soon as he finds a refutation of the statement. Under

P4, the acceptance function given the statement s is Δs(b) = cs(b)+ns(b)
cs(b)+ns(b)+rs(b)

.

By Lemma 3, it has a unique stable outcome. Under this procedure there

is no difference between any two logically equivalent statements A → B and

¬B → ¬A, and we are left to compare [Y ]→ [+] and [N ]→ [−].
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The next proposition (proven in

Appendix A and illustrated in the

figure for q = 0.8) shows that in

contrast to the result regarding the

two previous procedures, [Y ]→ [+]

is optimal for relatively low p while

the statement [N ]→ [−] is optimal

for high p.
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Stable outcomes of P4: q = 0.8

[Y ]→ [+]
[N ] → [−]

Proposition 4: Assume that all patients use procedure P4. If q <
√

5−1
2

,

then [N ] → [−] is optimal for all p (if p > q the stable outcome is 1 and

otherwise it is 1−q
1−p

). If
√

5−1
2

< q, then there is p̂ such that [Y ] → [+] is

optimal when p < p̂ and [N ]→ [−] is optimal when p > p̂.

Comment: We conclude the section by comparing the sequential search

procedures from the point of view of a patient. When p > q, procedure

P2 is the best since it leads to the desired stable outcome of 1. When

p < 1/2 ≤ q, the best procedure for the patients minimizes the likelihood

of taking the drug, which in this case is worse than not taking it. This

procedure is identified in Proposition 5 which is proven in Appendix A:

Proposition 5: When p < 1/2, the P3 procedure is better for a patient than

P2 and P4.

5 Dueling statements

Two firms, 1 and 2, compete over a population of patients by offering drugs

with success rates of p1 > p2, respectively. These rates are known only to

the firms. Eventually, every patient in the population buys one of the drugs.

Each firm simultaneously makes one of the four statements described in the

previous sections, although they now have a different interpretation: Y means

“buying from the firm that made the statement” and N means “buying from

15



its rival”. Thus, for example, the statement [N ] → [−] is interpreted as

“anyone who does not buy from our firm will not be cured”.

We assume that all patients use the following procedure: Sample until you

find either a confirmation or a refutation of one of the statements; buy from

a firm if you sampled a confirmation of that firm’s statement or a refutation

of its rival’s.

Firm i’s payoff from a pair of statements s1, s2, denoted by ui(s1, s2), is

calculated as follows: Let b denote the proportion of the population that

buys from firm 1. Denote by Wi(s1, s2, b) the probability that si is confirmed

or s−i is refuted in a single draw. Define Δ(s1,s2)(b) to be the acceptance

function of firm 1’s drug when the firms make the statements s1 and s2

and b is the fraction of the population that buys the drug from firm 1.

Given the patients’ procedure, Δ(s1,s2)(b) = W1(s1,s2,b)
W1(s1,s2,b)+W2(s1,s2,b)

. Denote by

b∗(s1, s2) the stable solution to the equation Δ(s1,s2)(b) = b, which will be

shown to always exist and to be unique. Finally, let u1(s1, s2) = b∗(s1, s2) and

u2(s1, s2) = 1 − b∗(s1, s2). This completes the description of the interaction

between the firms as a strategic zero-sum game.

As in the single-firm analysis, the above definition of payoffs adopts an

ex-ante view: When firm i compares a statement s to a statement s′ given

that its rival makes the statement sj , it forecasts the acceptance probabilities

under each pair of statements.

Denote by 1+ the case in which firm 1’s statement is confirmed and by 1−

the case in which it is refuted and similarly for firm 2. Thus, for example, if

1 makes the statement [2]→ [−] and 2 makes the statement [+]→ [2], then 1

wins when a patient observes 2− (confirming 1’s statement) or 1+ (refuting

2’s statement). It loses only in case 2+ (refuting 1’s statement and confirming

2’s). In order to calculate the payoff matrix we construct a table in which

the entry in row s1 and column s2 contains on its left, the cases in which 1

is chosen, and on its right, the cases in which 2 is chosen.
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[2]→ [+] [+]→ [2] [1]→ [−] [−]→ [1]

[1]→ [+] 1+2−/1−2+ 1+/1−2+ 1+/1− 1+2−/1−

[+]→ [1] 1+2−/2+ 1+/2+ 1+/2+1− 1+2−/2+1−

[2]→ [−] 2−/2+ 2−1+/2+ 2−1+/2+1− 2−/2+1−

[−]→ [2] 2−/1−2+ 2−1+/1−2+ 2−1+/1− 2−/1−

Table 3: The winning/losing cases.

Note that two pairs of statements induce the same acceptance function

if they lead to the same sets of winning and losing cases (e.g. the four pairs

of statements for which 1 wins in cases 1+ and 2− and loses in the other

two cases). Table 5 in Appendix B presents the corresponding acceptance

function and induced unique stable outcome for each entry in Table 3. Thus,

the payoff matrix is as follows:

b1 b2 b3 b4

[2]→ [+] [+]→ [2] [1]→ [−] [−]→ [1]

a1 [1]→ [+] T4 T3 p1 T1

a2 [+]→ [1] 1 1 T3 T4

a3 [2]→ [−] 1 − p2 1 T4 T2

a4 [−]→ [2] T2 T4 T1 T0

Table 4: The payoff matrix.

The exact expressions for T0, T1, T2, T3 and T4 are shown in Table 5 in Ap-

pendix B. Note that T1 > T4 > T2, T3; T1 > p1 > T3 ; 1 − p2 > T2 and

T4 > T0 > T2.

The game does not have an equilibrium in which a firm plays a pure

strategy. Given that p1 > p2 the value of the game is greater than 1/2. This

is because for any strategy of firm 2, firm 1 can achieve a market share larger

than 1/2 by mimicking firm 2’s strategy (thus obtaining an expected payoff

that is a convex combination of the values T0, (T1 +T2)/2, T4, (p1 +1−p2)/2,

and (1 + T3)/2, which are all above 1/2).
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Our main observation about the game is that in every equilibrium each

firm uses both a positive and a negative statement.

Proposition 6: In every equilibrium, the support of each firm’s strategy

includes at least one positive and one negative statement. Furthermore, the

support of the strategy of firm 2 (the firm with the inferior product) includes

[1] → [−].

Proof: Let (σ1, σ2) be a mixed-strategy Nash equilibrium. Assume first

that the support of σ2 does not include b3 = [1] → [−]. Then, firm 1’s

statements a3 and a4 are dominated by a2. But then b4 is dominated (by

b3) and therefore a2 dominates a1, a contradiction to any equilibrium not

involving a pure strategy.

Second, assume that the support of σ1 does not include a positive state-

ment. Then b3 is dominated by b4, a contradiction of the previous step.

Third, assume that the support of σ1 does not include a negative state-

ment. Then, b1 and b4 are dominated by b2 and b3, respectively. But then a1

is dominated by a4, a contradiction.

Finally, assume that σ2’s support contains only the two negative state-

ments. Then, a2 and a3 are dominated by a1 and a4, respectively. But now

b3 is dominated by b2, a contradiction. �

More can be said about the equilibria of this game in two special cases.

The first is p1 + p2 = 1, which can be interpreted as a market in which two

firms offer opposite drug treatments, only one of which can cure a patient.

The identity of the useful drug is independent across patients and the prob-

ability that it is firm i’s drug is pi.

Proposition 7: Assume that p1 = p > p2 = 1 − p. (i) In any equilibrium

the support of firm 1’s strategy includes both of its positive statements while

the support of firm 2’s strategy includes both of its negative statements. (ii)

The value of the game is below p but above p − 0.015. (iii) Firm 2 assigns

probability higher than p to the negative statements.
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The result that the market share of the superior firm is almost p can be

compared to those of two other cases. Suppose firm 1 is the only firm in the

market, patients search until they find a previous patient who bought the

drug, and then decide to also buy the drug if and only if the sampled patient

was cured. In this case, firm 1’s share will be p, and hence the presence of

an inferior competitor has only a small impact on its market share.

If, on the other hand, the market also includes a second inferior firm that

doesn’t advertise, then by Proposition 2, firm 1 will capture the entire market.

The reason that the presence of another firm (which doesn’t advertise) boosts

firm 1’s market share is as follows: When there is no other firm, encountering

a patient who was not cured is bad news for firm 1 since it is the only firm

offering a drug. However, when there is another firm that sells the drug,

sampling a patient who was not cured can be good news for firm 1 since the

sampled patient might have bought the drug from firm 2.

Propositions 6 and 7 imply that the support of an equilibrium strategy

contains at least three statements. Calculations show that for relatively low

(close to 0.5) and relatively high (close to 1) values of p there is an equilibrium

with full supports. Such equilibria have an interesting structure. Both firms

assign the same probability to the positive and negative statements that a

consequence implies an action, i.e., the probabilities that firm 1 assigns to

[+]→ [1] and [−]→ [2] are equal to those which firm 2 assigns to [+] → [2]

and [−] → [1], respectively. However, they swap the probabilities of the

statements that an action implies a consequence, i.e., the probabilities that

firm 1 assigns to [1] → [+] and [2] → [−] are equal to those which firm 2

assigns to [1]→ [−] and [2]→ [+], respectively. The reason for this is that if

σ1’s support includes all four statements then it must be that the expected

payoffs of all statements given σ2 = (α, β, γ, δ) are equal. However, it is

easy to verify that σ1 = (γ, β, α, δ) then makes firm 2 indifferent between all

statements and thus it is a maxmin strategy for firm 1.
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Proof of Proposition 7:

(i) Consider the strategy σ2 = ( T1−T3

1−T2+T1−T3
, 0, 1−T2

1−T2+T1−T3
, 0). Firm 1’s ex-

pected payoff from a2 and a4 is equal to T1−T3

1−T2+T1−T3
∙ 1 + 1−T2

1−T2+T1−T3
∙ T3,

which is less than p iff (T1 − T3)(1− p) < (1− T2)(p− T3) which holds when

1/2 < p < 1. Therefore, firm 2 can guarantee that firm 1’s share will not

exceed p.

Next, consider the strategy σ1 = (p, 0, 1 − p, 0). Since pT3 + (1 − p) = p

firm 1’s expected share given the statements b1, b2 or b3 is p. Firm 1’s share

if firm 2 uses b4 is pT1 + (1 − p)T2, which is above p − 0.0154.

(ii) If 2 assigns probability lower than p to the negative statements, then firm

1’s expected payoff from a2 is more than (1 − p) + pT3 = p.

(iii) See Appendix B. �

The second special case is one in which only firm 1 offers an effective

drug (p1 > 0 and p2 = 0). The question in this case is whether firm 2 can

guarantee itself a positive market share despite the fact that it offers a “fake”

drug, and if so, which type of statements enables it to do so.

Proposition 8: When p1 = p > p2 = 0, there is a unique mixed-strategy

equilibrium. In that equilibrium, the support of firm 1’s strategy contains only

the statements [+]→ [1] and [2]→ [−]; the support of firm 2’s strategy contains

only [1]→ [−] and [−]→ [1]; and the value of the game is (T1)2−pT2

2T1−p−T2
> p.

Thus, the firm that offers a fake drug uses

only negative statements about its rival

and obtains a positive share of the mar-

ket. The graph plots the market share ob-

tained by the fake firm for different values

of p:
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Proof: In this case, T0 = T2, T3 = p and T4 = T1. Elimination of weakly

dominated strategies leaves firm 1 with [+] → [1] and [2] → [−], and firm 2

with the two negative statements. A routine calculation yields the value of

the game, which is above p since T1 > p. �

6 Related literature

We conclude by comparing this paper to related strands of the literature in

which a speaker tries to persuade a listener to take some action.

Cheap talk. Although our model features cheap-talk statements by a speaker,

it differs from the standard cheap talk framework (see Crawford and Sobel,

1982). All that matters in that framework is the correlation between messages

and the state: The content and framing of the message per se are meaningless.

In contrast, the content of a statement made by our speaker is taken and

assessed by the listener literally and different framings of a statement can

be differentially effective. While the speaker’s statement may be correlated

with his knowledge, our listener is non-strategic and does not draw inferences

from that correlation.

Non-Bayesian persuasion In some persuasion models, the listener is not

Bayesian either because he commits how to respond to any information re-

ceived from the speaker (e.g., Glazer and Rubinstein, 2004), or because he

makes systematic mistakes in updating his beliefs given the speaker’s message

(e.g., de Clippel and Zhang, 2022).

Bayesian persuasion. In this approach (see Kamenica and Gentzkow, 2011), a

speaker publicly commits ex-ante to a Blackwell experiment, and a Bayesian

listener responds to the experiment’s outcome. In contrast, our listener is

not engaged in belief updating. Instead, he samples past cases and evaluates

the speaker’s statement in light of his sample, which stochastically depends

on the equilibrium behavior of listeners.
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Narratives. Our speaker makes a statement that relates an outcome to an

action. It can be interpreted as making a claim about a causal relation

between taking the drug and being cured. In this sense our paper is related

to recent studies on narratives as causal models. Under this view (see Eliaz

and Spiegler, 2020 and Eliaz, Spiegler and Weiss, 2021), a speaker, who

knows the true prior distribution over several variables, announces a causal

relation between a subset of these variables. The listener accepts this relation

and forms a belief by applying a Bayesian method to infinite data on the

realizations of all the variables, data which (as in our framework) is affected

by the listeners’ response to the narrative. In contrast to our model the

listeners are Bayesian, they do not test the validity of the narrative, and

they use an infinite amount of data.

Advertising. Advertising is traditionally modeled as an action taken by a

firm to draw the consumer’s attention to its product, change his utility from

its product or affect the consumer’s beliefs (see Bagwell, 2007). In contrast,

advertising in our model is a qualitative cheap talk statement about the prod-

uct’s quality, which is assessed by a consumer using data on other consumers’

equilibrium behavior.

Sampling. The assumption that a listener samples cases from the equilibrium

distribution builds on Osborne and Rubinstein (1998). Our result in Section

5, that in equilibrium a positive proportion of patients buy a drug even

when it is useless, is reminiscent of Spiegler (2006). He showed that when

firms compete in prices and consumers use a sampling procedure, firms earn

positive profits in equilibrium even though their product is worse than a

costless default. See also Bianchi and Jehiel (2015) who study investors who

pay attention only to a randomly drawn sample from firms’ financial reports.
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Appendix A (to sections 3 and 4)

Lemma 1: For any statement s, each of the equations Δ′
s(b) = 0 and

Δ′′
s(b) = 0 has at most one solution in [0, 1].

Proof: Since cs and rs are linear functions of b then Δs(b) has the form

Δs(b) = (k1b + k2)
n − (k3b + k4)

n, where: (i) k1b + k2 ≥ k3b + k4 for all

b (since Δs(b) ≥ 0 ), (ii) k1 6= k3 (since cs(b) is not constant) and (iii)

k1b + k2 > 0 for all b (since rs(b) < 1 for all b).

The equation Δ′
s(b) = n[k1(k1b + k2)

n−1 − k3(k3b + k4)
n−1] = 0 can hold

only when k3b + k4 > 0 in which case the equation is equivalent to the linear

equation k1b+k2

k3b+k4
= (k3

k1
)1/(n−1). For even n, there is a unique root which is

positive and therefore there is a unique b that solves the linear equation

(which might be outside the interval [0, 1]). For odd n, there are two roots,

but the negative root induces a solution that is negative and therefore only

the positive root induces an equation with a solution that might be inside

[0, 1].

Similarly, Δ′′
s(b) = n(n − 1)[k2

1(k1b + k2)
n−2 − k2

3(k3b + k4)
n−2] = 0 holds

when k1b+k2

k3b+k4
= (

k2
3

k2
1
)1/(n−2) and thus can be true in [0, 1] at most once. �

Lemma 2: For any two statements s and s′, which have the same con-

firmation case (refutation case), we have Δs(b) > Δs′(b) iff rs(b) < rs′(b)

(cs(b) > cs′(b)) for all b ∈ (0, 1).

Proof: If the statements share the same refutation case then the comparison

between the acceptance functions is simply between the confirmation rates.

If they share the same confirmation case, then for each b ∈ (0, 1) we have

cs(b) = cs′(b) > 0, and by the convexity of the polynomial xn, the comparison

Δs(b) > Δs′(b) is equivalent to rs(b) < rs′(b). �

Lemma 3: If Δs(b) = k1b+k2

k3b+k4
, where both k1b+k2 and k3b+k4 receive values

between 0 and 1 and k3 > 0, then there is a unique stable outcome.

24



Proof: The equation Δ′
s(b) = 1 is equivalent to k1k4−k2k3−(k3b+k4)

2 = 0.

Since k3b+k4 is positive the equation has at most one solution and therefore

there is at most one point where Δ′
s(b) = 1.

The acceptance function is continuous and therefore there is at least one

stable outcome: If the graph of the function lies above the main diagonal,

then the point b = 1 is stable; if it lies below it, then the point b = 0 is stable

and otherwise it has at least one stable outcome when it crosses the main

diagonal from above.

Assume by contradiction that there are two stable outcomes b1 < b2.

Then Δ′
s(b1) < 1 and Δ′

s(b2) < 1. In order to reach b2 from above the main

diagonal, there must be a point b1 < b3 < b2 at which Δ′
s(b3) > 1. By the

continuity of Δ′
s, there are two points where Δ′

s(b) = 1, a contradiction. �

Proposition 3: If all patients use procedure P3, then there is p̂ such that for

any p < p̂ the statement [N ] → [−] is optimal and for p > p̂ the statement

[Y ] → [+] is optimal. The stable outcomes of the optimal statements are

interior for all p < 1.

Proof: The function Δ[Y ]→[+](b) = α
1−δ

= bp
b+(1−b)q

satisfies Δ(0) = 0, Δ(1) =

p and Δ′(0) = p/q. For p < q, the stable outcome is b = 0 and for p ≥ q it

is b∗[Y ]→[+](p) = p−q
1−q

.

The function Δ[N ]→[−](b) = δ
1−α

= (1−b)(1−q)
1−bp

satisfies Δ(0) = 1 − q and

Δ(1) = 0 and therefore it has an interior stable outcome. Thus, for p ≤ q

the statement [N ]→ [−] is optimal (b∗[N ]→[−](p) =
2−q−

√
(2−q)2−4p(1−q)

2p
).

When p > q, clearly, b∗[N ]→[−](q) > b∗[Y ]→[+](q) and b∗[N ]→[−](1) < b∗[Y ]→[+](1).

The equation b∗[N ]→[−](p) = b∗[Y ]→[+](p) requires that Δ[N ]→[−] and Δ[Y ]→[+]

intersect at b0 = p−q
1−q

. Since δ(b0)(1 − δ(b0)) = (1 − p)p and α(bo)(1 −

α(b0)) = p (p−q)(1−q−p2+pq)
(1−q)2

, this occurs only at p which solves the equation

(p − q)(1 + p − q) = (1 − q)2 i.e. at p̂ =

√
(1−2q)2+4(1−q)+2q−1

2
. The statement

[N ]→ [−] is optimal for p < p̂ and [Y ]→ [+] is optimal for p > p̂. �
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Proposition 4: Assume that all patients use procedure P4. If q <
√

5−1
2

,

then [N ] → [−] is optimal for all p (if p > q the stable outcome is 1 and

otherwise it is 1−q
1−p

). If
√

5−1
2

< q, then there is p̂ such that [Y ] → [+] is

optimal when p < p̂ and [N ]→ [−] is optimal when p > p̂.

Proof: The function Δ[N ]→[−](b) = α+δ
α+δ+γ

satisfies that Δ(0) = 1 − q and

Δ(1) = 1. For p > q, we have Δ(b) > b for all b < 1 and the stable outcome

is b = 1. For p < q, the point b = 1 is unstable and therefore b∗[N ]→[−] = 1−q
1−p

.

The function Δ[Y ]→[+](b) = α+δ
1−γ

satisfies Δ(0) = 1 > 1 − q, Δ(1) = p < 1

and its stable outcome is b∗[Y ]→[+] =
2q+p−2+

√
(2−2q−p)2+4q(1−q)

2q
.

To compare the two statements when p < q, note that Δ[N ]→[−](b) =

Δ[Y ]→[+](b) only when b = q
q+1−p

. The statement [N ] → [−] is optimal iff

b∗[N ]→[−] = 1−q
1−p

≥ q
q+1−p

. For q ≤ (
√

5 − 1)/2 it holds for all p ≤ q and

otherwise it holds in the interval p ∈ [ q2+q−1
2q−1

, q]. �

Proposition 5: When p < 1/2 the P3 procedure is weakly better for the

patient than P2 and P4.

Proof: We proceed in several steps. Denote by Δi(b) the acceptance function

of the firm’s optimal statement given procedure Pi and by b∗i the unique

stable outcome induced by the firm’s optimal statement.

Step 1: Δ4(b) = (1−b)(1−q)
1−bp

.

Since p < 1/2 ≤ q the inequality p <

√
(1−2q)2+4(1−q)+(2q−1)

2
holds (since the

RHS of the inequality is above 1/2) and therefore by Proposition 3 the firm’s

optimal statement given P3 is [N ]→ [−] and therefore Δ4(b) = (1−b)(1−q)
1−bp

.

Step 2: P3 induces a weakly lower stable outcome than P2.

It suffices to show that Δ4(b) ≤ Δ3(b) for all b. By Proposition 2:

If p ∈ [0, 1 − q2

1−q
], then Δ3(b) = 1 − q ≥ 1−b

1−bp
(1 − q) = Δ4(b).

If p ∈
[
1 − q2

1−q
, p̂
]
, then Δ3(b) = (1−b)(1−q)

b(1−p)+(1−b)(1−q)
≥ Δ4(b) = (1−b)(1−q)

1−bp
iff

1 − bp ≥ b − bp + (1 − b)(1 − q), which is true.
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Finally, if p ∈ [p̂, q], then p ≥ p̂ = 1

1+
√

1−p̂
1−q

=
√

1 − q

√
(5−q)−

√
(1−q)

2
> 1 − q.

Hence, Δ3(b) = p > (1 − q) ≥ 1−b
1−bp

(1 − q) = Δ4(b).

Step 3: P3 induces a lower stable outcome than P4 when [Y ] → [+] is the

firm’s optimal statement under P4.

Assume that [Y ]→ [+] is the optimal statement under P4. Then by Propo-

sition 4, Δ5(b) = bp+(1−b)(1−q)
1−(1−b)q

whereas Δ4(b) = (1−b)(1−q)
1−bp

. Hence, Δ4(b) <

Δ5(b) for all b < q
q+p

. It therefore suffices to show that b∗5 < q
q+p

. Some

tedious algebra indeed verifies this inequality for all q ≥ 1/2 > p.

Step 4: P3 induces a lower stable outcome than P4 when [N ]→ [−] is the

firm’s optimal statement under P4.

By Proposition 4, when [N ] → [−] is optimal given P4, we have Δ5(b) =

bp+(1−b)(1−q)
1−b(1−p)

> Δ4(b) = (1−b)(1−q)
1−bp

, since given p < 1/2 we have both bp+(1−

b)(1 − q) > (1 − b)(1 − q) and 1 − b(1 − p) < 1 − bp. �
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Appendix B (to section 5)

combination Δ(s1,s2) The Stable Outcome

1+/2+ bp1

bp1+(1−b)p2
1

2−/2+ 1 − p2 1 − p2

1+/1− p1 p1

2−/1− (1−b)(1−p2)
b(1−p1)+(1−b)(1−p2)

T0 =
√

1−p2√
1−Tp1+

√
1−p2

2−1+/2+ bp1+(1−b)(1−p2)
1−b(1−p1)

1

1+2−/1− bp1+(1−b)(1−p2)
1−(1−b)p2

T1 =
2p2+p1−2+

√
(2−p1)2−4p2(1−p1)

2p2

2−/2+1− (1−b)(1−p2)
1−bp1

T2 =
2−p2−

√
(2−p2)2−4p1(1−p2)

2p1

1+/2+1− bp1

1−(1−b)(1−p2)
T3 = p1−p2

1−p2

2−1+/1−2+ bp1 + (1 − b)(1 − p2) T4 = 1−p2

2−p1−p2

Table 5: The acceptance functions and the unique stable outcome for each
acceptance/rejection combination, where T1 > T4, p1; T4, 1 − p2 > T2;
p1, T4 > T3; T1 > T4 > T2, T3.

b1 b2 b3 b4

[2] → [+] [+] → [2] [1] → [−] [−] → [1]

a1 [1] → [+] p T3 p T1

a2 [+] → [1] 1 1 T3 p

a3 [2] → [−] p 1 p T2

a4 [−] → [2] T2 p T1 T0

Table 6: The payoff matrix for the case p1 = p = 1−p2, where T0 = p

p+
√

p(1−p)
;

T1 =
−p+

√
(2−p)2−4(1−p)2

2(1−p)
> p > T2 =

1+p−
√

(1+p)2−4p2

2p
; p > T3 = 2p−1

p
and

p > T0 > T2.

Proposition 7: Assume that p1 = p > p2 = 1 − p. (iii) In any equilibrium,

the support of firm 1’s strategy includes both of its positive statements while

the support of firm 2’s strategy includes both of its negative statements.
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Proof: Let (σ1, σ2) be an equilibrium:

Step 1: It is impossible that the support of σ1 includes only a1 and a3.

Assume the contrary. We obtain a contradiction by showing that either b2 or

b4 is superior to b3 (which by Proposition 6 is in the support of σ2). That is,

for every α, either α ∙ T3 +(1−α) ∙1 < p or α ∙ T1 +(1−α) ∙T2 < p. If the first

inequality does not hold, that is, if 1 − p ≥ α(1 − T3), then we need to show

that α ∙ T1 +(1−α) ∙T2 < p. It suffices to show that 1−p
1−T3

(T1 −T2) < p−T2,

i.e., p(1 − T1) > T2(1 − p) which holds for all 1 > p > 1/2.

Step 2: The support of σ1 includes a2.

If not, b3 is dominated by b1 since by Step 1, σ1’s support includes a4.

Step 3: The support of σ2 includes b4.

Assume the contrary. There are two possibilities:

If the support of σ2 includes b2, then a1 is dominated by a3 and in that case,

b2 is dominated by b1, a contradiction.

If the support of σ2 contains only b1 and b3, then the value of the game is at

least p. Denote α to be the probability that σ2 assigns to b1 and 1 − α to

be the probability it assigns to b3. Then, it must be that firm 1’s expected

payoff from a2 (which by Step 2 is in σ1’s support) is at least p, that is,

α ∙ 1 + (1 − α)T3 ≥ p, which implies that α ≥ p−T3

1−T3
= (1 − p). Again using

the inequality (1 − p)T2 + pT1 < p, it follows that a4 is not in the support of

σ1. However, in that case, b3 is superior to b1, a contradiction.

Step 4: σ1’s support includes a1.

Otherwise, σ2’s support does not include b2 (which is dominated by b1), and

in that case firm 1’s statement a1 obtains an expected payoff of more than p

(since firm 2 also uses b4), a contradiction to part (i).

Step 5: σ2’s support includes b2.

Otherwise, the value of the game would be higher than p since by Step 4, a1

is in σ1’s support and yields an expected payoff higher than p, since by Step

3, b4 is in σ2’s support, a contradiction to part (i). �
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