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Abstract We consider a model in which each agent in a population chooses one of
two options. Each agent does not know what the available options are and can choose
an option only after observing another agent who has already chosen that option.
In addition, the agents’ preferences over the two options are correlated. An agent
can either imitate an observed agent or wait until he meets two agents who made
different choices, in which case he can compare their choices and choose accordingly.
A novel feature of the model is that agents observe not only the choices made by
others, but also some information about the process that led them to those choices.
We study two cases: In the first, an agent notes whether the observed agent imitated
others or whether he actually compared the available alternatives. In the second, an
agent notes whether the observed agent’s decision was hasty or not. It is shown that
in equilibrium the probability of making a mistake is higher in the second case and
that the existence of these nonstandard “neuro” observations systematically biases the
equilibrium distribution of choices.
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1 Introduction

The standard method of modeling an agent in economics utilizes the concept of a choice
function, which assigns a single alternative (“a choice”) to every subset of available
alternatives (“a choice problem”) in some relevant domain. The expression C(A) = a
is used to state that the agent chooses the alternative a from the choice problem A.
Recent advances in choice theory have extended the traditional definition of a choice
problem to include additional information, referred to as a frame. A frame represents
the circumstances in which the choice problem was encountered, circumstances that
do not affect the preferences of the agent, but may nevertheless affect his choice. The
expression C(A, f ) = a states that the agent chooses a from the choice problem
A when A is presented in terms of the frame f (see Salant and Rubinstein 2008).
Leading examples of frames include a default option, the order in which alternatives
are presented and the language in which the problem is phrased.

In this paper, we extend the choice function in a different direction as suggested in
Rubinstein (2008) (see also Caplin and Dean 2011). Instead of enriching the descrip-
tion of the input into the choice function, we enrich its output. For every choice prob-
lem, our augmented choice function specifies not only what the agent chooses, but also
evidence of the process that leads him to that choice. The expression C(A) = (a, e)
means that when an agent faces a choice problem A, he chooses a and produces
evidence e. Examples of such evidence include response time, blushing and brain
activity. An agent who is described by such an extended choice function is referred to
as a “neuro agent”.

The reader may wonder about the use of the term “neuro agent”. Neuroinformation
is usually thought of as information obtained by measuring various activities in the
brain. We take a broader view of the term “neuro evidence” that includes any potentially
observable information that a decision maker generates while making a choice. We
use the term “neuro agent” to emphasize that from an “economic” point of view, it
makes no difference whether the information is obtained by placing the agent in an
fMRI machine or whether it is obtained through more conventional methods.

The novelty of the paper is that it embeds neuroagents within an economic model,
in which neuroinformation affects their decisions. A typical situation we have in mind
is the following: You need a dentist while on a business trip. You meet two individuals
in a similar situation who have each already chosen different dentists. In addition to
their choices you also observe information about their choice process. One individual
deliberated for a long time while the other made a quick decision. It is likely that you
would be inclined to adopt the choice of the first individual.

The agent in our model is looking for a good or service. He knows that there are two
options to choose from but he does not know what an option is until he meets some
other agent who has chosen that option. Thus, he is able to compare the two options
only after meeting two agents who made different choices. In addition, the agents’
preferences over the two options are correlated. To illustrate this idea, suppose that you
are looking for a treatment for back pain. You know that there are various treatments
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available, but you are not familiar with them, nor do you know who can provide them.
In order to find the treatment that best suits you, you need to find someone who has
had that treatment. As long as you meet only people who have made the same choice
you can only imitate them. Only after you have met individuals who can inform you
about both treatments and who can give you contact information will you be able to
make the appropriate choice.

An agent’s behavior in our model is described without explicitly specifying the
optimization that produces it. To optimally process the stream of information that
agents receive and to arrive at the correct inference require highly sophisticated skills
(even in our simple setup). Therefore, we study exogenously-given choice rules, which
can be viewed as heuristics that agents can revert to when faced with the complicated
inference problem described here.

In the benchmark model, each agent sequentially samples up to n randomly-drawn
observations of agents who have already solved the same decision problem. As soon
as an agent observes two others who have made different choices, he stops the search,
compares the two options and makes his own choice. Otherwise, he chooses the only
observed chosen alternative. We study two variants of the model in which an agent’s
observation of another agent’s behavior includes “neuro” evidence. In the first, the
“neuro” evidence consists of whether the observed agent has compared two options
before making his choice or whether he merely imitated another agent’s choice. The
agent stops the search before observing two agents who made different choices if
he reaches the end of the sample or if he observes an agent who made his choice
after comparing the two options. In the second model, the neuroevidence consists of
whether or not the agent decided hastily as soon as he observed only one agent. In this
case, the agent stops the search without observing two different choices if he reaches
the end of the sample or if he observes an agent who deliberated more than one period
before making his choice.

In what follows, we define and characterize the equilibria of the models. We show
that in the presence of neuroinformation, the proportion of agents who choose the more
“popular” option (i.e., the option more likely to be chosen following a comparison) is
higher than in the absence of such information. Furthermore, this proportion is higher
in the case when the neuroevidence includes whether or not a decision was made
hastily. All proofs are presented in the appendix.

2 The model

There is a continuum of agents who wish to choose a good or service. Each agent
has very limited knowledge of the available options. He knows that there are only
two feasible alternatives, denoted as a and b, but does not know what they are. He
cannot choose or even evaluate an alternative unless he meets an individual who has
already chosen one of the alternatives. He knows that one of the two alternatives is the
popular one in the sense that if he could compare the two options, he would prefer it
with probability θ > 1/2. However, he does not know which of the two alternatives
it is, and he does not have any prior belief over the identity of the popular option. He
understands that his preferred alternative is correlated with that of every other agent.
Therefore, he perceives the choice made by another agent as being informative about
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the identity of the popular option. Without loss of generality, we denote a to be the
popular alternative.

Ideally, the agent should compare the two alternatives himself and choose the pre-
ferred one. However, this requires him to wait until he meets two other agents who
have made different choices. Alternatively, he can avoid the wait and exploit the corre-
lation in preferences by imitating another agent’s choice in the hope that he chose the
preferred alternative. However, if that other agent did not compare the two alternatives
himself but rather imitated another agent, then imitation may be less informative. This
would be true if, for example, there was initially an arbitrary distribution of agents’
choices and most agents just imitate one another without making a comparison.

An agent’s choice in the model is determined by a procedure that sequentially
samples (at random) observations of other agents. An observation is a pair (x, e)
where x ∈ {a, b} is the choice of the observed agent and e ∈ E is evidence of the
choice procedure that produced the choice x . We refer to e as “neuro” evidence.

Because the agents in the model have very limited knowledge, it seems more natural
to assert that they follow a reasonable heuristic rather than assume that they solve a full-
blown optimization problem (even though this latter approach is the more conventional
one). A choice procedure in our model is a stopping rule that specifies the sequences
of observations following which the agent stops sampling and makes a decision. In
all the variants of the model, the agent stops searching as soon as he observes two
agents who chose different alternatives. The variants differ in their specification of the
stopping rule in that case that he only meets agents who made the same choice (with
possibly different “neuro” information).

Our objective is to investigate the choice dynamics of a population of agents who
follow a given choice procedure. The symbol πe

x represents the proportion of agents
in the population who choose x and generate the evidence e. Denote by π the vector
(πe

x )x,e. We use the notation πx = ∑
e πe

x for the frequency of agents who choose x
and πe = ∑

x πe
x for the frequency of agents who produce the evidence e. A stopping

rule and a distribution of observations π induce a distribution P(π) of the observations
produced by an agent who samples from π and applies the stopping rule.

A neuroequilibrium is defined as a distribution π∗ for which P(π∗) = π∗, i.e., in
equilibrium, the distribution of observations produced by “newcomers” is identical to
that produced by the existing population.

In order to define the notion of stability, we need to specify a set �∗ of possible
distributions of observations. This set must satisfy the condition that the dynamic
system, defined by π̇ = P(π) − π , remains within �∗ for every initial condition
within �∗. In two variants of the model, we set �∗ = �, the set of probability
distributions over X × E . We say that an equilibrium π∗ ∈ �∗ is stable if the dynamic
system is Lyapunov stable at π∗. In other words, for every ε > 0, there exists a δ small
enough that, if the system starts within distance δ from π∗, it remains within distance
ε from π∗.

3 The benchmark model

In the benchmark model, an agent observes only the choices of other agents (formally,
E is a singleton). We assume that he follows procedure (S-n), according to which he
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sequentially samples up to n agents and stops sampling as soon as either (i) he has
sampled two agents who have made different choices or (i i) he has sampled n agents
who all made the same choice. In case (i), he makes a comparison and chooses a with
probability θ and b with probability 1 − θ . In case (i i), he chooses the only option he
has observed. This procedure leads to the following function:

Pa(π) = (πa)n + θ
(
1 − (πa)n − (1 − πa)n)

.

Note that the model always has two degenerate equilibria in which all agents choose one
particular alternative. We are interested in interior equilibria, which are characterized
by a nondegenerate mixture of alternatives. With respect to stability, we will not impose
any constraints on the possible distributions, i.e., �∗ = �.

Proposition 0. (i) If n > 1
1−θ

, then there exists a unique interior neuroequilibrium,
which is the only stable equilibrium. In this equilibrium, πa > θ .

(ii) The interior equilibrium converges to (θ, 1 − θ) as n → ∞.
(iii) If n ≤ 1

1−θ
; then, there exist only extreme neuroequilibria, and the unique stable

equilibrium is the one concentrated on a.

When n is large enough, most agents will eventually compare the two options,
so that the distribution of choices will converge to the distribution of preferences in
which a proportion of θ chooses a. If n is small, then in equilibrium, agents tend
to imitate one another and hence will be less likely to compare the two alternatives
themselves. In each of the two extreme equilibria, all agents choose the same option,
but in the unique stable equilibrium, all agents choose a such that agents who would
have preferred option b end up with the “wrong” option. Thus, unless n is sufficiently
small, the equilibrium distribution of choices in the benchmark model is unbiased. This
will no longer be true when agents observe “neuroinformation” about the individuals
they sample.

The benchmark model is related to the word-of-mouth and the social learning
literature in which agents observe samples of other agents’ actions and then decide
which is best for them. In one line of research, each agent receives a noisy signal
regarding his payoffs from a given set of options, which is correlated with the signal
received by other agents. Each agent chooses his action optimally after having observed
the actions of some other agents. Following Banerjee (1992) and Bikhchandani et al.
(1992), some of these models assume that agents arrive sequentially and that each one
observes the actions of all his predecessors. In others, such as Banerjee (1993), each
agent observes the payoffs and actions of only a sample of other agents. In contrast to
Proposition 0, these papers show that as the population of agents grows, the equilibrium
converges to an inefficient outcome.

A second line of research examines exogenously-specified rules of behavior, which
are not derived as the solution to some optimization problem [most notable are Elli-
son and Fudenberg (1993, 1995)]. In these models, an agent decides between two
alternatives in each period. He has a preferred alternative, but does not know which it
is because payoffs are noisy. The information available to the agent consists of other
agents’ payoffs, which are correlated with his own. In some of these models, an agent
observes a summary statistic of past payoffs and chosen actions, while in others, he
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observes a summary statistic of only the current period’s payoffs. These models yield a
result similar to the equilibrium characterization of our benchmark model: Despite the
fact that agents are not optimizing, players may eventually adopt the action, which is
on average superior. For experimental evidence on heuristical learning, see Hohnisch
et al. (2013).

4 Were the options compared?

Assume now that the agent observes not only the choice made by another agent, but
also additional “neuroevidence”, in this case whether or not the other agent compared
the two alternatives before making his choice. Let E = {+,−}. The observation
(x,+) means that “he chose x and made a comparison” while the observation (x,−)

means that “he chose x and did not make a comparison”. Let π+
x and π−

x denote
the proportions of agents choosing x and producing the neuroevidence + and −,
respectively.

Denote by (C-n) the procedure according to which an agent sequentially samples
up to n other agents. As soon as he has sampled two agents who have made different
choices, he stops, compares the two options and makes a choice. After a sequence of
observations, ((x,−), (x,−), . . . , (x,−), (x,+)), of at most length n or after sam-
pling the observation (x,−) n times, the agent stops and chooses x .

As mentioned, this procedure is not derived from the solution to an optimization
problem. Rather, we motivate the stopping rule as follows. Comparing the two options
is the only way to ascertain one’s own preferences. However, in order to make a com-
parison, the agent must wait for the two alternatives to appear. This may be costly for
the agent since both sampling and comparing the two options may consume mental and
physical resources. Therefore, given the correlation between the agent’s preferences
and those of other agents (especially if θ is large), it may be optimal for the agent
to stop sampling once he has observed an agent who has compared the two options.
However, it may not be optimal to stop searching after observing an agent who has
made a choice without having compared the two options himself. This is because that
agent’s choice may be the outcome of meeting a long chain of agents who merely
imitated one another starting from an arbitrary initial distribution. The above proce-
dure also seems reasonable if in the background there are “noise” agents (not modeled
here explicitly) who simply choose randomly without sampling any other agents and
without making a comparison.

Given the assumption that agents who make a comparison choose x with probability
θx , we restrict the set of distributions of observations, �∗, to those for which π+

a /π+
b =

θ/(1 − θ).
The above procedure leads to the following P function: for x = a, b,

P(x,−)(π) =
n−1∑

l=0

(π−
x )lπ+

x + (π−
x )n

P(x,+)(π) = θx (1 − P(a,−)(π) − P(b,−)(π))

Note that the dynamic system π̇ = P(π)−π remains in �∗ since
∑

x=a,b[P(x,−)(π)+
P(x,+)(π)] ≡ 1 and P(a,+)(π)/P(b,+)(π) ≡ θ/(1 − θ).
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For the case n = ∞, we define P(x,−)(π) = π+
x /(1 − π−

x ) at any point where
π−

x < 1 and P(x,−)(π) = 1 if π−
x = 1.

In what follows, we focus on the two extreme cases, n = 2 and n = ∞, for which
we establish the uniqueness and stability of interior equilibria.

Proposition (C-2.) Let n = 2. For θ ≥ 2/3, there is no interior neuroequilibrium.
For 1/2 < θ < 2/3, there exists a unique interior equilibrium, which is stable and in
which the proportion of a-choosers is 3θ − 1 > θ .

The next result presents a sufficient condition for the existence of an interior equi-
librium for every n > 2. While we have not been able to prove this analytically, we
believe that this equilibrium has the following properties: (i) It is the only interior
equilibrium in (C-n), (i i) it is stable and (i i i) more than θ of the participants choose
A.

Proposition (C-n.) If θ <
2(n−1)
2n−1 , then an interior neuroequilibrium exists.

The next result analyzes the equilibrium for the procedure (C-∞) in which the agent
stops searching only if he observes the two options or if he samples another agent who
has compared them.

Proposition (C-∞) For n = ∞, there is a unique and stable interior neuroequilib-
rium. In this equilibrium: (i) The proportion of a-choosers is larger than θ and smaller
than the proportion of a-choosers in the interior equilibrium for n = 2, and (i i) the
probability that an agent makes a wrong decision is 1

2 − 1
2

√
4θ − 4θ2 + 1)+2θ(1−θ),

which is larger than 1 − θ .

To summarize, this section has analyzed the case in which agents observe not only
the choice of other agents they meet, but also whether that choice was the result of a
comparison. Agents stop their search as soon as they meet an agent who has compared
the two options himself.

When the number of search periods is small (two) and correlation is high, the system
will settle on the extreme distribution where the “most popular” alternative (i.e. a) will
be chosen by all agents, yielding a probability of mistake of 1− θ . However, when the
number of search periods increases, there exists an interior equilibrium. Unlike the
benchmark case, in this equilibrium, the excess of a-choosers remains positive even in
the extreme case in which an agent may continue sampling ad infinitum. Furthermore,
the proportion of a -choosers in the limit exceeds the “natural level” of θ , and the
probability of making a mistake exceeds 1 − θ . The precise probability of making
a mistake depends on the value of θ but its maximal value is 1 − 1/

√
2 ≈ 0.29.

The probability of mistake is higher than if all agents were to simply choose a. In
contrast, in the benchmark model, there are no mistakes in the limit. However, a
welfare comparison between the two procedures is problematic since it ignores the
benefits from shortening the search time.

5 Was the decision hasty?

Assume now that an agent can observe not only other agents’ choices, but also whether
they deliberated over their decisions or made their choices hastily after observing
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only one other agent. Denote by (T-n) the procedure according to which an agent
sequentially samples up to n observations. As soon as he observes two agents who have
made different choices, he stops the search, compares the two options and chooses one
of them. He also stops searching once he has observed an individual who has searched
for at least two periods. In this case, the agent makes the same choice as the observed
agent. If he samples n individuals who made the same choice after searching for only
one period, the agent stops the search and makes the same choice as they did.

Note the relation between the neuroevidence observed in procedure (C-n) and that
observed in (T-n). In (C-n), an agent might know for certain that another agent has
compared the two options, while in (T-n), he might know for certain that another agent
(who decided after only one period) has not compared the two options.

Formally, E = {1, 2}. The observation (x, 1) means that the sampled agent chose
x “hastily”, i.e., after only a single observation. The observation (x, 2) describes an
agent who chose x and sampled at least two other agents prior to his choice.

As before, we do not derive the search procedure from the solution of an opti-
mization problem. Agents are persuaded to choose an option x if they themselves
have compared the two options and found x to be preferable or if they have observed
another agent who chose x after some deliberation.

The (T-n) procedure leads to the following function P (x = a, b):

P(x,1)(π) = π2
x

P(x,2)(π) =
[

n−1∑

k=1

(π1
x )k

]

· π2
x + θx

[

(1 − πx )

n−1∑

k=1

(π1
x )k + (πx )

n−1∑

k=1

(π1−x )
k

]

+ (π1
x )n

The model always has two extreme equilibria in which all individuals choose x (either
a or b): Half of the population does so immediately and the other half does so at a
later point in time.

We again are mainly interested in the interior equilibria. The following proposition
establishes necessary and sufficient conditions for the existence of an interior equilib-
rium and proves that whenever such an equilibrium exists, it is unique (though we have
not proven that it is stable). As before, we will deal separately with the analytically
more convenient case of n = ∞, for which we will prove stability and show that the
equilibrium proportion of a-choosers exceeds θ .

Proposition (T-n.) There exists an interior neuroequilibrium if and only if 2 −
(1/2)n−2 > θ

1−θ
. When an interior equilibrium does exist, it is unique.

It follows from the proposition that for n = 2, there exist only extreme neuroequi-
libria. We have not been able to prove analytically that the proportion of a-choosers
is higher than θ at the interior equilibrium of (T-n). The case of (T-∞) is easier to
fully address. In particular, we show that observing whether an agent made the choice
hastily or not biases the equilibrium in favor of a.

Proposition (T-∞). When n = ∞, there exists an interior neuroequilibrium if and
only if θ < 2/3. When this inequality holds, the equilibrium is unique and stable (for
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�∗ = �). Furthermore, (i) the proportion of a-choosers is higher than that in the
case of (C-∞), which in turn is higher than θ , and (i i) the probability that an agent
makes a wrong decision is 1

3 .

In conclusion, when the hastiness of an agent can be observed, the proportion of
agents who choose a exceeds the “natural value” of θ , even in the limiting case where
there is no bound on the number of samples, and this excess is larger than in the case
of (C-∞). Furthermore, when θ ≥ 2/3, no interior equilibrium exists and the stable
equilibrium is one in which all agents choose a. Note that the probability that an agent
makes a mistake in equilibrium is higher for (T-∞) than for (C-∞). When θ < 2/3,

the probability of making a mistake is 1
3 for (T-∞ ) and at most 0.29 for (C-∞). When

θ ≥ 2/3, the equilibrium probability of making a mistake in (T-∞) is 1 − θ (since
all agents choose a), which is larger than 1

2 − 1
2

√
4θ − 4θ2 + 1) + 2θ(1 − θ), the

probability of making a mistake in (C-∞), for all 2/3 ≤ θ ≤ 1.

6 Final comments

Neuroeconomics can broadly be viewed as the study of nonstandard data, which
includes information not only on individuals’ choices but also on their choice processes
they employ. To illustrate the relevance of such rich data to economics, our paper
demonstrates how the observations of other agents’ choice processes (which we refer
to as “neuro” evidence) influence an agent’s decisions and the extent to which they
influence economic interactions. A simple model was used in which agents decide
between two options (a and b ) by applying choice procedures that take neuroevidence
as input and in equilibrium interpret this evidence in a consistent manner. The use of
neuroevidence leads to a stable equilibrium in which the proportion of a-choosers is
higher than the actual proportion of agents who prefer a to b. Since this is only one
particular example of a neuromodel, future research should examine more interesting
classes of models in which neuroinformation plays a crucial role.

Acknowledgments The second author acknowledges financial support from ERC Grant 269143. We
would like to thank Zvi Artstein, Hadar Binsky, Tom Cunningham and especially Neil Thakral for their
assistance.

Appendix

Proof of Proposition 0. Since πa + πb = 1, the dynamic system is captured by the
following function g, which describes the a-component of the dynamic system:

π̇a = g(πa) = (πa)n + θ
(
1 − (πa)n − (1 − πa)n) − πa

A distribution (πa, 1 − πa) is an equilibrium if and only if g(πa) = 0.
Note that g(0) = g(1) = 0, g′(0) > 0 and n > 1

1−θ
if and only if g′(1) > 0. It is

straightforward to verify that for n > 2, there exists a unique interior value of πa at
which g′′(πa) = 0 and that for n = 2, there is no such value.

123



524 K. Eliaz, A. Rubinstein

(i) It follows from the above that the function g must have an interior root. Fur-
thermore, there exists a unique interior equilibrium π∗

a ∈ (0, 1) since if there were
more than one, then g′(πa) would have at least three interior roots and g′′(πa)

would have at least two. Furthermore, since g(θ) > 0 (given θ > 1/2), we con-
clude that π∗

a > θ .

The stability of the unique interior equilibrium follows from the fact that g(πa) is
positive for πa < π∗

a and negative for πa > π∗
a . Since the derivative of g is positive

at the extreme points, g is positive near zero and negative near one, and therefore, the
degenerate equilibria are unstable.

(ii) Index the function g as gn . The sequence of functions gn converges to the
function θ − πa , which equals zero only at πa = θ . Therefore, the sequence of
interior equilibria must converge to (θ, 1 − θ) as n → ∞.
(iii) Recall that g(0) = g(1) = 0, g′(0) > 0 and g′(1) ≤ 0. Since g′′(πa) has at
most one interior root, g′(πa) has at most two. But if an interior equilibrium did
exist, then g′(πa) would have at least three interior roots. �


Proof of Proposition (C-2.) In equilibrium,

π−
x = π+

x + π−
x (π−

x + π+
x )

π+
x = θxπ

+

for x = a, b. It follows from the first equation that π−
a (π−

b +π+
b ) = π+

a and π−
b (π−

a +
π+

a ) = π+
b . The two equations imply that π+

b (π−
a + 1) = π+

a (π−
b + 1) and hence

(π−
a + 1)/(π−

b + 1) = θ/(1 − θ)

The left-hand side must be <2, and therefore, θ must be <2/3. In other words, for
θ ≥ 2/3, the only equilibria are the extreme ones.

Let f (z) = z(1−z)
1+z . Thus, π+

a = f (π−
a ) and π+

b = f (π−
b ). The existence of an

equilibrium is equivalent to the existence of a solution to the following equation:

1 = (π−
a + π+

a ) + (π−
b + π+

b ) = h(π−
a ) + h((π−

a + 1)(1 − θ)/θ − 1)

where h(z) = z + f (z) = 2z
1+z . Since h is increasing, there is at most one solution

for π−
a . It is straightforward to solve the equation (for θ < 2/3) and verify that the

following tuple is an equilibrium:

(π−
a , π−

b , π+
a , π+

b ) =
(

3θ − 1

3(1 − θ)
,

2 − 3θ

3θ
,
(3θ − 1)(2 − 3θ)

3(1 − θ)
,
(3θ − 1)(2 − 3θ)

3θ

)

In this equilibrium, πb = (2 − 3θ) and πa = 3θ − 1 > θ .
For stability, note that a point in �∗ is characterized by two parameters, π−

a and
π−

b . The dynamic system can therefore be written as (x = a, b):

π̇−
x = θx (1 − π−) + π−

x (π−
x + θx (1 − π−)) − π−

x
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Its Jacobian in equilibrium is:

(
−1 − θπ−

b + 2π−
a (1 − θ) = 9θ−7

3 −θ(1 + π−
a ) = − 2θ

3(1−θ)

−(1 − θ)(1 + π−
b ) = − 2(1−θ)

3θ
−1 − (1 − θ)π−

a + 2π−
b θ = −9θ+2

3

)

It is straightforward to verify that the eigenvalues of this matrix are negative in the
relevant range of θ . Therefore, the interior equilibrium is Lyapunov stable. �

Proof of Proposition (C-n.) Define

f (y) = (y − yn)(1 − y)

1 − yn
= y − yn

∑n−1
k=0 yk

Note that f (0) = f (1) = 0 , f ′(0) = 1 and f ′(1) = 1−n
n . In equilibrium (x = a, b):

f (π−
x ) = θxπ

+

π−
a + π−

b + π+ = 1

An interior equilibrium exists if and only if there exists a solution to the equation:

g(y) = f (1 − y − f (y)/θ) − (1 − θ) f (y)/θ = 0

That is, y∗ is a solution to the above equation if and only if in equilibrium, π−
a = y∗,

π+
a = f (y∗), π−

b = 1 − y∗ − f (y∗)/θ and π+
b = f (y∗)(1 − θ)/θ .

Note that g(0) = g(1) = 0 and g′(y) = f ′(1 − y − f (y)/θ)(−1 − f ′(y)/θ) −
f ′(y)(1 − θ)/θ . Hence,

g′(0) = (2n−1)θ−1
nθ

> 0 for all θ > 1/2, and

g′(1) = (n−1)(2−θ)−nθ
nθ

> 0 iff θ <
2(n−1)
2n−1 It follows that if θ <

2(n−1)
2n−1 , then

there exists y∗ satisfying g(y∗) = 0 and hence an interior equilibrium exists. �

Proof of Proposition (C-∞). An interior equilibrium satisfies the following equations
(x = a, b):

π−
x = π+

x

1 − π−
x

π+
x = θxπ

+

Therefore, π−
a (1 − π−

a ) − (1 − π+ − π−
a )(π+ + π−

a ) = (2θ − 1)π+. Since π+ �= 0,
we obtain π+ = 2θ − 2π−

a . Substituting this into the first equation yields (π−
a )2 −

π−
a (1 + 2θ) + 2θ2 = 0. The only solution of this equation, which is less than one, is:

π−
a =

(
1

2
+ θ

)

− 1

2

√
4θ − 4θ2 + 1
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(Note that 4θ − 4θ2 + 1 > 0 for all θ and since
√

4θ − 4θ2 + 1 < 1 + 2θ , we have
π−

a > 0. For θ > 1/2, we have 4θ − 4θ2 + 1 > 2θ − 1, and thus, π−
a < 1.) The

proportion of a-choosers, π−
a + θπ+ = (θ − 1

2 )
√

4θ − 4θ2 + 1 + 1
2 , is greater than

θ , and one can verify that it is less than 3θ − 1.
An agent of type a (b) makes a mistake whenever he chooses b (a) without making a

comparison himself. It follows that the probability of making a mistake is (1−θ)π−
a +

θπ−
b . Substituting the equilibrium values for π−

a and π−
b yields the expression in (i i).

With respect to stability, consider the following dynamic system:

π̇−
a = θ(1 − π−

a − π−
b )

1 − π−
a

− π−
a

π̇−
b = (1 − θ)(1 − π−

a − π−
b )

1 − π−
b

− π−
b

The Jacobian is:

⎛

⎝

−θπ−
b

(1−π−
a )2 − 1 −θ

1−π−
a

−(1−θ)

1−π−
b

−(1−θ)π−
a

(1−π−
b )2 − 1

⎞

⎠

We have verified that the eigenvalues at the equilibrium point are negative, and hence,
the equilibrium is Lyapunov stable. �


Proof of Proposition (T-n.) The equilibrium conditions are (x = a, b):

π1
x = π2

x

π2
x = π1

x (1 − (π1
x )n−1)(π2

x + θxπ
2−x + θxπ

1−x )

1 − π1
x

+ θxπ
1−x (1 − (π1−x )

n−1)(π2
x + π1

x )

1 − π1−x

+(π1
x )n

Define A ≡ π1
a and B ≡ π1

b = 1/2 − A. The above equations then reduce to:

A = A(1 − An−1)(A + 2θ B)

1 − A
+ θ B(1 − Bn−1)2A

1 − B
+ An

Thus, an interior equilibrium exists if and only if the following equation has a solution
in (0, 1) :

1 − θ

θ
· 1 − An−1

1 − A
= 1 − ( 1

2 − A)n−1

1 − ( 1
2 − A)

Letting g(z) ≡ 1−zn−1

1−z , we can rewrite the equation as follows:
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1 − θ

θ
g(A) = g

(
1

2
− A

)

where A ∈ [0, 1
2 ]. Note that g(A) increases with A while g( 1

2 − A) decreases with A.

This has two implications: First, if an interior solution does exist, it is unique. Second,
an interior solution exists if and only if g( 1

2 ) = 2 − (1/2)n−2 > θ
1−θ

. �

Proof of Proposition (T-∞). The equilibrium equations are (x = a, b):

π1
x = π2

x

π2
x =

[ ∞∑

k=1

(π1
x )k

]

· π2
x + θx

[

(π2−x + π1−x )

∞∑

k=1

(π1
x )k + (π2

x + π1
x )

∞∑

k=1

(π1−x )
k

]

Denoting A ≡ π1
a and B = π1

b = 1/2 − A, we obtain:

A = A2 + θ2AB

1 − A
+ θ2AB

1 − B

This equation has an interior solution A = 3θ−1
2 if and only if θ < 2

3 . In the interior
equilibrium, the probability of choosing a is 3θ − 1 > θ . Furthermore, one can verify
that the proportion of a-choosers is larger for (T-∞) than for (C-∞ ).

An agent of type a (b) makes a wrong decision after observing an agent who chose
b (a) with some delay and none of the previous agents he observed had chosen a(b).
It follows that the expected probability of making a mistake is:

(1 − θ)
π1

a

1 − π1
a

+ θ
π1

b

1 − π1
b

Substituting the equilibrium values, π1
a = 3θ−1

2 and π1
b = 1

2 − π1
a , we obtain that the

probability of making a mistake is constant and equal to 1
3 for all θ < 2

3 .

To establish stability, we used Mathematica to derive the closed form expressions
(as functions of θ ) for the eigenvalues of the Jacobian matrix at the unique interior equi-
librium. Using numerical methods, we then verified that all eigenvalues are negative
when θ < 2/3. �
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