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The paper presents a simple game-theoretic model in which players decide on
search procedures for a prize located in one of a set of labeled boxes. The prize is
awarded to the player who finds it first. A player can decide on the number of
(costly) search units he employs and on the order in which he conducts the search.
It is shown that in equilibrium, the players employ an equal number of search units
and conduct a completely random search. The paper demonstrates that the search
procedure is intrinsically inefficient. Journal of Economic Literature Classification
Number: D83. � 1997 Academic Press

1. INTRODUCTION

In this paper we analyze a simple interactive search model in which two
players search for a single treasure hidden in one of a given set of labeled
``boxes.'' Only the first player to find the treasure gets to keep it. The search
is executed by elementary search units which are able to check one box per
unit of time. We model the players' constraints regarding the intensity of
search by treating the search units as costly. A player decides on how many
search units to employ and on a strategy for the search units to follow, i.e.,
which boxes will be examined at each period. We will assume that the
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search strategies are selected by the players after observing each other
choice regarding the number of search units.

Any model of search can be viewed as a model of decision making in
which the decision maker searches for a solution to a problem (see, for
example, [6]). Therefore, a game in which the procedures of search are
decided strategically can be viewed as a situation in which the procedures
of decision making are the result of interactive reasoning. Since the choice
of decision making procedures is modeled explicitly, one can view this
paper as a modest contribution to the growing literature of economic
models of bounded rationality.

The assumption of a single prize runs contrary to the informational
assumptions made in most of the search literature in which the values of
alternatives are taken to be stochastically independent. It is, however,
suitable for decision problems in which only one action is successful and
where the successful action can be found only by checking the options one
by one. For real life scenarios which fit the model, consider the case of two
reporters who are looking for a hotel presently hosting a movie star. Each
reporter wants to be the first to meet the movie star and they carry out the
search by calling the hotels one by one. Or consider two problem solvers
who compete to find a solution to a particular problem and can find it only
by following one of a given number of equally promising routes.

We assume that the boxes have names and that the searchers can decide
on the order in which to open the boxes. The more common assumptions
used in the literature are that a player can call a box randomly, i.e., ``bring
me a box'' (see, for example, [3]), or that there is a fixed ordering of the
boxes such that the boxes are placed in a line and the searcher calls for
them in that order, i.e., ``bring me the next box'' (see, for example, [2]).
These two models allow an equilibrium analysis of the intensity of search.
Assigning labels to the boxes permits us to consider a variety of search
strategies such as opening the boxes in a pre-determined order. When more
than one player searches for the prize one cannot, a priori, exclude the
possibility of an equilibrium with a pair of search strategies in which each
player uses different search procedures which are optimal given the other.
Thus the model allows us to discuss the consequences of competition which
are not connected with the intensity of search.

Clearly, the model is similar to those of the R6D race literature. The
main difference lies in our interest in determining the procedure of R6D
search. As an R6D model, our model resembles the trial and error of
research procedure typical to the chemical and pharmaceutical industries.
The assumption of only one prize has been extensively used in the theo-
retical R6D literature (see [5]) and seems to be empirically supported by
findings that the private value of patents is extremely skewed (see [1]).
The search activity in our model is carried out by search units, the number
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of which is determined at the outset. This assumption is in line with the
empirical R6D findings which indicate that firms adjust their R6D
expenditures most infrequently (see [4]).

The possibility of having a search procedure is particularly important in
situations where the boxes are not a priori symmetric. If the probability of
the prize being located in some subset of boxes is greater than the proba-
bility for another subset, then the ability to use box addresses affects the
optimal search procedure. In a single searcher problem, obviously the
optimal procedure is to first sample the boxes with the higher probability
of containing the prize. Such an intuitive property, however, cannot be
automatically extended to interactive search situations with more than one
searcher. In fact, we show that in our setting, the equilibrium procedures
do not satisfy this property.

Our main conclusion is that an interactive search situation entails several
intrinsic inefficiencies:

(i) In equilibrium, the players will use an excess of costly search
units even though the prize could have been discovered (although not as
quickly) using only one search unit.

(ii) There is an intrinsic duplication inefficiency, i.e., the two players
may frequently search the same empty box. Consequently, the two players
do not reach the prize as quickly as they could have. (Although time
considerations are not explicitly embedded in the model, the equilibrium is
robust to the addition of some degree of impatience.)

(iii) In an asymmetric situation where there is a higher probability
that the prize is in one specific box, the efficient search rule is to start by
searching this box. We show that if the asymmetry is not ``too large,'' the
equilibrium is such that there is a positive probability that neither player
will search the high-probability box in the first period.

Note that while issue (i) relates to the inefficient search effort or the
inefficient number of search units, (ii) and (iii) deal with inefficient search
procedures. The distinction is helpful in comparing our results with those
of the literature on R6D. While the noncooperative over-investment in
R6D races (point (i)) arises in a variety of R6D models, the inefficiencies
indicated in points (ii) and (iii) have not been discussed in the literature.
In all the R6D race models we are aware of, either the order of search is
predetermined, i.e., the boxes are in a fixed order, or the boxes do not carry
labels. Thus, in these models the duplicate searching of the same box is
built into the model rather than derived as a conclusion from a more basic
setting in which the duplication can be avoided.

To appreciate the intuition in our main result, consider the case in which
both players employ k search units. Efficiency (in terms of minimizing the
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number of search operations) requires that the two players split the N
boxes into blocks of N�k boxes, half of which are searched by player 1 and
half by player 2. However, if N�k>2, this is not an equilibrium because
player 2 can deviate profitably by searching those boxes in period t which
player 1 is planning to search in period t+1, assuring a probability of
1&k�N>1�2 of winning the prize.

2. THE MODEL

Two players, 1 and 2, are searching for a prize which has a value of 1.
There are N boxes b1 , ..., bN , one of which contains the prize. The location
of the prize is determined randomly.

We analyze a two-stage game. In the first stage each player i must
choose a number, ki , the number of search units. Each search unit is
capable of opening one box at each period. For simplicity we will confine
ourselves to cases where N is divisible by all ki . This enables us to avoid
unnecessary calculations without undermining the analysis.

In the second stage, each player i chooses a random search strategy Pi

after learning kj . During the search player i is not informed of which boxes
have already been opened by the other player. A random search strategy
is a probability distribution over the set of pure search strategies. A (pure)
search strategy is a partition of the N boxes into sets S 1

i , ..., S Ti
i such that

the number of elements in each of the cells in the partition is ki (there is
no reason to assume that the players prefer to delay the process and keep
some search units idle). Consequently Ti=N�ki .

Note that we have assumed that the size of player i 's search apparatus,
ki , is observed by his opponent before the search starts. This assumption
reflects the assumption that it is easier for a player to change his search
strategy than to change the size of the resources he devotes to search. In
Section 5 we will comment on the case where the search program is deter-
mined simultaneously with the size of the search apparatus.

A pair of search strategies stochastically determines the winner of the
prize. Assume that the prize is in box b. If b # S t(i)

i & S t( j)
j , then if t(i)<t( j),

player i locates the prize and if t(i)=t( j), each of the players has a prob-
ability 0.5 of locating it.

For any pair of choices (ki , Pi) i=1, 2 , player i 's payoff is the probability
of locating the prize minus ki times the cost of a search unit, c. Thus, we
assume that there is a fixed cost of a search unit rather than a fixed cost
of sampling, as is assumed in most of the search literature.

The solution concept we adopt is that of Subgame Perfect Equilibrium.
Note that the second stage is a zero-sum game. This means that the second
stage yields a unique expected payoff to each player. However, note that it
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does not necessarily yield a unique equilibrium strategy. Also, while allowing
randomization in the second stage, we do not permit randomization in the
choice of the number of search units.

In order to simplify the statement of the results, we assume that there is
no k for which c=1�k. We further assume that 1�2>c>1�2N. The other
cases are degenerate. If c>1, the choice of ki=0 is obviously a dominating
strategy. If c>1�2, the only equilibrium is such that only one player
employs one search unit, as the payoffs from employing a second search
unit cannot exceed one-half. If c<1�2N, the only equilibrium will involve
both players employing N search units. It is only in the range 1�2>c>
1�2N that the model has an interesting strategic content.

3. THE ANALYSIS

The analysis consists of three claims. The first claim involves calculating
the value of the second stage of the game for every pair of choices (k1 , k2):

Claim 1. For any given pair (k1, k2) the value of the second stage of the
game for player i is ki �2kj if ki�kj and 1&kj�2ki if ki�kj .

We are now able to characterize the equilibrium number of search units.
The analysis indicates that in equilibrium, there is essentially no profit,
a feature common to other R6D models. This result follows from our
assumption that the cost of the search units is linear and from the observa-
tion noted in Claim 1 that the players' profits are linear in the number of
search units.

Claim 2. If 1�2>c>1�2N, then in all equilibria of the game, the two
players choose k1=k2=k where k satisfies 1�2(1+k)<c<1�2k.

Finally, we are able to show that when c>1�N (and thus, k<N�2) in
equilibrium, the players randomize the order of search so that the probability
that a certain box is examined at each period is equal to 1�Ti=k�N.

Claim 3. For k<N�2 (namely, when there are at least three rounds of
search) in any equilibrium, the probability that any box is checked at period
t (1�t�N�k) is precisely k�N.

Proof of Claim 1. First observe that given ki�kj , the pair of strategies
in which both players mix all possible pure strategies with equal
probabilities is an equilibrium. In proving the formula for the probability
that player i finds the prize we can avoid cumbersome calculations through

436 FERSHTMAN AND RUBINSTEIN



File: 642J 222606 . By:DS . Date:13:02:97 . Time:15:34 LOP8M. V8.0. Page 01:01
Codes: 3644 Signs: 3084 . Length: 45 pic 0 pts, 190 mm

the following observation. The search lasts for no more than N�kj periods
and the number of boxes which may be searched by player i is Nki �kj . On
condition that the prize is in one of these Nki �kj boxes, the probability that
player i will find it is 1�2 (conditional on it being in the set of boxes he may
search during the first N�kj periods, the probability that player j searches
it in period t is equal to that of player i). Thus, the probability that i will
find the prize is (Nki �2kj)�N=ki�2kj . Since the second stage of the game is
a zero-sum game, the value of player i when ki�kj is (1&kj�2ki). Q.E.D.

Proof of Claim 2. Assume that (ki , kj) is an equilibrium choice in the
first stage. Let i be a player such that ki�kj for j{i. Then player i 's payoff
is ki�2kj , an expression that is linear in ki . If kj�k, then the marginal gain
to player i from a search unit is larger than c and player i can profitably
deviate by increasing ki . If kj>k, then the marginal gain to player i from
another search unit is 1�2kj�1�2(k+1)<c. Thus, for such an equilibrium,
ki must be 0, which implies that kj must be 1. Since 1=kj>k, this implies
that k must be 0. However, in that case, player i could deviate by purchasing
one search unit and achieving a payoff of 1�2&c>0 in contradiction to
(ki , kj) being an equilibrium. Thus, ki=kj .

If ki=kj>k, then a player can profitably deviate by reducing the number
of search units (since 1�2kj�1�2(k+1)<c). If ki=kj<k, then by increasing
the number of units by one, player i increases his payoff by 1&kj �2(kj+1)&
1�2=[(kj+2)&(kj+1)]�[2(kj+1)]=1�[2(kj+1)]�1�2k>c, which is
thus profitable. We are left with ki=kj=k. It is easy to verify that the
choice (k1, k2)=(k, k) is indeed an equilibrium. Q.E.D.

Proof of Claim 3. A uniform strategy is one which assigns equal
probabilities to all possible pure strategies. Note that if ki=kj , then a
player can guarantee a payoff of 1�2 by using the uniform strategy.

Now, consider any equilibrium. By Claim 2, ki=kj and by Claim 1, each
player's equilibrium payoff is 1�2. Denote by pi (b, t) the probability that
player i 's strategy, if it operates by itself, opens box b at period t. We first
show that at equilibrium, pi (b, t)+pi (b, t+1)=pi (b$, t)+pi (b$, t+1) for
any period t and boxes b and b$. To see this, assume that player i adopts
a search strategy such that pi (b, t)+pi (b, t+1)>pi (b$, t)+pi (b$, t+1) for
some b, b$, and t. We will show that player j has a strategy that gives him
an expected payoff strictly greater than the equilibrium value of 1�2. The
strategy is a ``modified uniform strategy.'' That is, it is the mixed strategy
that assigns equal probabilities to all orders of search modified so that the
probability mass assigned to any pure search strategy that searches b$ at
period t and b at period t+1 is reassigned in the same order with the
exception that b is searched at period t and b$ at t+1. Since the uniform
strategy is a strategy that yields the payoff 1�2 whatever the other player
does, it is enough to show that this modified uniform strategy performs
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better, and thus achieves a payoff greater than 1�2, which is player j 's equi-
librium payoff.

When player j searches box b$ at time t, the probability of winning is
[ pi (b$, t)�2+�s>t pi (b$, s)]�N. Let q be the proportion of pure strategies
of player j in which b$ is searched at t and b at t+1. Player j 's ``loss'' from
the postponement of searching b$ is q[ pi (b$, t)+pi (b$, t+1)]�2N. The first
term consists of the probability that player i opens the box b$ at period t
while player j postpones opening b$ to period t+1. The second term is the
probability that player i opens the box b$ at period t+1 and player j,
instead of opening the box at period t (before player i), opens it at period
t+1 together with player i. Similarly, player j 's ``gain'' from advancing the
search of box b is q[ pi (b, t)+pi (b, t+1)]�2N, which is larger than the loss
of the postponement.

Now since for all i and t, �b pi (b, t)=k, we obtain [ pi (b, t)+
pi (b, t+1)]=2k�N. In addition to the N�k&1 equations pi (b, t)+
pi (b, t+1)=2k�N in the case that N�k>2 we have the equation
�t=1, ..., N�k pi (b, t)=1 and thus pi (b, t)=k�N for all b and t. Q.E.D.

Note that Claim 3 does not imply that the equilibrium is unique, that is,
there may be an equilibrium in which the two players do not use ``uniform
strategies.'' For example, in the case of k=1 and N=3, both pairs of
strategies in which each player equally randomizes between the three
orders of search (b1, b2, b3), (b2, b3, b1), and (b3, b1, b2) or (b1, b3, b2),
(b2, b1, b3), and (b3, b2, b1) are equilibria.

Note that when k=N�2, any pair (ki , Pi) with k1=k2=k is an equi-
librium, including the pair of strategies in which the players split the N
boxes equally between them.

4. DIFFERENT PROBABILITIES

So far we have considered the case in which there are equal probabilities
that the prize is in each of the boxes. In this section we change this assump-
tion and assume that the prize is in box b1 with probability q+ and that
it is in one of the other boxes with the lower probability q&<q+ (where
q++(N&1) q&=1). The basic tradeoff in a player's considerations
regarding the optimal search strategy is between assigning probability 1 to
first examining the most promising box, b1 , and avoiding a deterministic
plan that can be used by the other player to his advantage. We claim that
if q+ is not too large, the second effect dominates the first and no player
assigns probability 1 to open b1 in the first period.

Claim 4. Consider the search game in which the probability of finding
the prize in b1 is larger than in the other boxes and assume that c>2�N.

438 FERSHTMAN AND RUBINSTEIN



File: 642J 222608 . By:DS . Date:13:02:97 . Time:15:34 LOP8M. V8.0. Page 01:01
Codes: 3178 Signs: 2706 . Length: 45 pic 0 pts, 190 mm

There is q*>1�N so that if q+ # (1�N, q*) then in any equilibrium there is
a positive probability that b1 will not be opened in the first period.

Proof. In Claim 2 we showed that for the case in which q+=q&, in all
equilibria the two players choose k1=k2=k in the first stage (where k is
defined in Claim 2). For some q**>1�N, it must be true that for any
q+ # (1�N, q**), k1=k2=k in all equilibria. We will show that there is no
equilibrium in which one of the players, say player 1, assigns probability 1
to opening b1 at the first period.

The second stage of the game is a zero-sum game with value 1�2. Thus,
it is sufficient to show that player 1 does not have a maxmin strategy s*
in which he opens b1 at the first period with probability 1. Player 2, by
responding to s* with the same strategy s*, can achieve a payoff of 1�2.
Thus, it is sufficient to show that player 2 may achieve a higher payoff than
he would obtain obtain by using s* if he uses a search strategy in which
he postpones opening b1 to the last period while fully randomizing with
respect to all other boxes. To see the effect of such a strategy, notice that
it is equivalent to a complete randomization among all orderings in which
b1 is searched in the first period, followed by a random switch of one
of the boxes that was assigned to the last period with b1 . By postponing
opening b1 to the last period, player 2 loses q+�2. By moving a box from
the last to the first period, player 2 gains q&[(k&1)�2(N&1)+1&(k&1)�
(N&1)]&q&k�2(N&1). The strategy s* is worse iff q+�2<[(k&1)�
2(N&1)+1&(k&1)�(N&1)] q&&kq&�2(N&1). By substituting q& we
find this inequality to be equivalent to q+<q*=min[(2N&2k&1)�
(N 2&2k), q**]. The condition on c implying that k<N�2 guarantees that
q*>1�N. Q.E.D.

5. DISCUSSION

An important assumption in most of the search literature is that sampling
is a random draw. In this paper, we dealt with the case in which the objects
sampled (stores, projects, or candidates) have specific labels, and the search
procedure may utilize these addresses so that the sample is not random. Our
main result (Claim 3) indicates that in our setting, players in equilibrium use
a symmetric random strategy in spite of the ability to call up specific objects.

We identify three types of inefficiencies in the model. First, the competi-
tion prevents the players from splitting the set of boxes between them and
therefore they may frequently search the same box twice. This is not
optimal if the search is costly or if time is valuable. Notice that we did not
include time loss per se in the model; however, adding this component
makes little substantial difference. If time has no value then the model
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exhibits a second source of inefficiency, the excessive use of search units.
This second result conforms to the R6D literature which has demonstrated
the inefficiency arising from excessive search intensities. The third type of
inefficiency arises from the fact that in equilibrium, the order in which
boxes are opened is not necessarily in accordance with the likelihood that
they contain the prize.

Admittedly, the model is too simple. Initially, we had planned to analyze
games in which players may use more complicated decision procedures. We
failed to prove clear-cut propositions for such models and sufficed with
reporting on the simple model. Nevertheless, we still believe that this area
of research requires more work focusing on the equilibrium structure of
decision procedures.

Let us comment on some of the special assumptions we made in this
paper:

1. We have considered the case in which the number of search units
of each player is chosen and observed before the players decide their own
particular search programs. This assumption fits the quite realistic case
where the number of search units is less flexible than the orders given to
the units when and where to search.

The case in which the size of the search body and its operation plan are
decided simultaneously is a simultaneous game, whose analysis is not very
different from our analysis except where N�k=2. The reason is that when
N�k>2, any search program of player i having the property pi (b, t)=
1�(N�k) for all b and t is an equilibrium strategy for any subgame with
whatever kj .

On the other hand, when k=N�2, the two-stage model has an equilibrium
in which the players split the N boxes equally. This is not an equilibrium for
the simultaneous game since player 2 can benefit by reducing the number of
search units to k&1. This will make player 2 lose the priority in reaching the
prize in one box (which he will examined together with player 1 at the
second period) and thus reduce the probability to reach the prize only by
1�2N. Given our assumption c>1�2N, this is a profitable deviation.

2. Our setup is different from the standard search model as we
assume that there is a fixed cost to hiring a search unit while opening a box
is a free operation. A model that assumes that opening boxes is costly
allows discussion of the decision maker's decision of when to stop searching.
We emphasize the search structure which we have simplified by assuming
that opening boxes is free. The assumption that opening boxes is costly
would change some of the results: The optimal search program may
involve stopping the search before opening all boxes; therefore, the second
stage game would not be a zero-sum game. If the cost of opening a box is
small enough, we would still receive the same qualitative results.
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3. We assume that during the search, players are not informed about
the boxes that have already been opened by their opponent. An alternative
model would assume that after each period, each player observes which
boxes have already been examined by the other player. Clearly, in such
situations, players would avoid opening boxes previously opened by their
opponents. We, however, adopt the assumption of no observability, which
reflects situations in which players cannot follow the search conducted
by opponents. For example, this assumption is a characteristic typical of
mental search (such as in problem solving).

4. A main feature of our model is that boxes have addresses and
there is no restriction on the order in which the search unit approaches
boxes. Another possible, and interesting, search problem is the case in
which players must open boxes in some pre-determined order. That is, box
j may be opened only after the previous j&1 boxes have been opened.
Such a model would fit a situation where opening the j&1 boxes is the
necessary operation enabling the searcher to be aware of the address of box
j. The equilibrium search intensity in a model under such an assumption is
different from the one we found in the above analysis. Take, for example,
the case in which N=9 and 1�8<c<1�6. In our model, in equilibrium,
k1=k2=3 whereas in the model with pre-determined order, in equilibrium,
the number of search units equals 4.
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