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This paper is the first part of Research Memorandum 25, The Center for
Research in Game Theory and Mathematical Economy which was published in
May 1977 and was based on my M.Sc. Thesis, written in 1975-6 at the Hebrew
University of Jerusalem under the supervision of Professor B. Peleg. Other parts
of the report were published in “Equilibrium in Supergames with the Overtaking
Criterion,” J. Eeon. Theory 21 (1979) 1-9, and “Strong Perfect Equilibrium in
Supergames,” International J. Game Theory 9 (1980) 1-12. The main theorem
in this paper was discovered simultaneously by R. J. Aumann and L. S. Shapley.

1. Introduction

There are significant differences between the situation of players undertak-
ing to play a single game, and players who know that they will play the
same game repeatedly in the future. Strategy in the first case is a single
action; in the second, it is a sequence of rules, each one of which pertains
to the outcomes preceding it. The preferences of the participants are de-
termined partly by temporal considerations. The participants may adopt
risky strategies, “supported” by threats of retribution in the future.

Analysis of a finite sequence of identical games shows that this model
is inadequate for the analysis. If the number of games is finite and known
initially, the players will treat the last game as if it were a single game. Asg
the threats implicit in the game before last are proven to be false threats,
the game before last is treated as a single game, and so on. (For a detailed
analysis, see Luce and Raiffa [8].)

In order to avoid “end-points” in the model, we define a “supergame” as
an infinite sequence of identical games, together with the players’ evaluation
relations (that is, their preference orders on utility sequences). Obviously,
the assumption of an infinite planning horizon is unrealistic, but it is an
approximation to the situation we wish to describe (see Aumann (1]).

The literature deals mainly with comparison of equilibrium concepts in
supergames and single games. (See Aumann {1] and [2]. The results are
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derived more simply in [5]; see also [3] and [4].) Other papers emphasize
the uses of the concept of supergames in economics are Friedman [6] and
Kurz [7].

In this paper, as in most of the literature, it is assumed that the partic-
ipants evaluate the utility flows according to the criterion of the limit of
the means of the flows. The drawback in this evaluation relation is that it
ignores any finite time interval.

The formal model, described in Section 2, is taken from Roth.?

The single game is given in strategic form. A Nash equilibrium in an n-
player super game is an n-tuple of supergame strategies, such that no player
may singly deviate profitably from his strategy. A steady Nash equilibrium
is one which produces identical outcomes for every game played. In Section
3, the steady equilibrium points will be characterized by a “two-stage” finite
game in which the time element is reduced to “present” and “future.”

An equilibrium point will be called perfect if after any possible “his-
tory,” the strategies planned are an equilibrium point. In other words, no
player ever has a motive to change his strategy. The main theorem of this
paper provides a complete characterization of steady perfect equilibrium
outcomes for supergames with the limit of means evaluation relation. It is
proved that the requirement of perfection does not alter the set of steady
equilibrium outcomes.

2. The model

(i) The single game G is a game in strategic form

G = ({Si}iei {mikiz1) -

The set of players is N = {1,...,n}. For each i € N, the set of strategies of
iis 8;; S; is assumed to be non-empty and compact. S =[]}, S; is the set
of outcomes. An element in S will be called an outcome of G. The preference
relations of player i are defined by utility function &; : § — R (where R is
the set of the reals), which are continuous in the product topology.

Given o € §, a payoff vector is the n-tuple n(g) = (mi(o),..., 1 ()}
For convenience we will denote the (n—1)-tuple (o1,...,0i—1,0i+1,-.,0n)
by o_;, and the n-tuple o by {c_;, 0;). o will be called a (Nask) equilibrium
if for all 7 and for all s; € 8}, m;i(0-s, 8;) < wi(o).

%I wish to thank Professor A. E. Roth for permitting me to use the model
described in Roth [9].
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If the set of strategies is finite, and it is possible to adopt mixed strategies,
we can identify S; with the set of mixed strategies of ¢, and #; with the
expected payoff.

{ii) The supergame G* is the game (G <1,...,<y), where G is a single
game and the <; are evaluation relations on real number sequences; that is,
<; is a binary relation on 7;(8)Y ((4% is the set of sequences of elements
in A) where 7;(S) is the range of m; on §. <; will be transitive and anti-
symmetric but not necessarily a total order.

The set of outcomes at time ¢, S(t), is S. A strategy for i in G™ is a
set {fi(£)}2,, where fi(1) € 5(1), and for ¢t > 2, fi(t) : IT'C; S(j) — S
Thus, a supergame strategy is a choice of strategies at every stage, possibly
dependent on the outcomes preceding the choice. We assume all players
know all the choices made in the past by all the players.

The set of strategies of 4 will be denoted by F;. F is the set of n-tuples
of the strategies; F =[], F;.

Given f € F, the outcome at time ¢ will be denoted by o(f)(¢), and is
defined inductively by

a(£)(1) = (f(1),---, fa(1))
a(£)@) = (.-, fil)o(F)(D), ... a(F)E—1D),...) .

We will define an evaluation relation <; on F, induced by <;, as follows.

(Vi,g € F)(f=ig & {m(o(A))}21 < {mlo(g)(t)}i2,) -

Given f € F, we will denote (f1,..., fi—1, fit1,--- fa) by foi. FEF
is a (Nash) equilibrium in the supergame G if there is no h; € F; such
that f=:(f_:,hi). f € F is steady if there exists o € S such that for all
t, a(f)(t) = 0. If f € F is steady, we will denote the corresponding o by

&(f).

3. Characterization of steady Nash equilibria

We will assume that each player is characterized by a single evaluation
relation. We will merely assume that the evaluation relations are reasonable,
in the sense that they satisfy:

(A.1) If for all ¢, ¥, = yo, and 2; = xo, then ¢ < yo implies z < y.
(A.2) If z <z, and z < y (that is, for all £ € N, z; < 1), then z < 3.

(A.3) If there exists an a € A such that (a,z1,%2,...) < (a,91,¥2,-..);
then z < y.
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ExXAMPLES:

1 The limit of means evaluation relation is defined by

1< 1 &
z <y iff h_m*ﬁ;xt<li_nlgzyt-

— n—oo
n—o0 =1

2 Overtaking criterion evaluation relation, defined by

z <y iff lim Z(y,;w-:::,;)>0‘

n
=1

3 The evalnation relation with discount parameter 0 < § < 1, defined
by
o0 oQ
z <y iff Z&tmt < Z&tyt .
t=1 t=1

This section has two goals. The first is to characterize the steady Nash
equilibria using the equilibria of a “finite” two-stage game, G?, derived
from G*°. The game G? is a twofold repetition of G. A strategy in G2
contains decisions about the “present,” the first game, and the “future,”
the second game. The latter decision depends on the outcome of the former.
The second aim is to show that the considerations included in the notion
of equilibrium of a supergame can be studied by a two-stage model.

We will now define the derived game, G2. A strategy for a player 7 in
G? is a pair, (f;(1), fi(2)), where f;(1) € S; and fi(2) : (1) — §;. We will
denote the strategies of i by F?, and write F2 — [Lien FE

We define a partial order <2 on 7;(S) x m;(S) as follows.

—p 2 . 1) b <ay and
(bl’bz)—b_<i ﬂ,—(al,ﬂ.g) it {2) (bl,bg,bg,bg,...) =i (al,ag,ag,ag,...),
where ~; is the evaluation relation of a player ¢ in G*°.

The outcome of G2, where a player adopts strategy f € F? is defined by:

a(F)(1) = (f1(1),---, fa(1))
a(f)2) = (Ale(H)D)), ..., fala(HD)) .
f € F? will be called steady if there exists a ¢ € § such that o(f)(1) =

o(f)(2) = o. Such a o will be denoted by 6(f). f € F? will be called an
equilibrium if there is no i and g; € F? such that

(mila(FUONNier <F (ma(o(F-ir 90)(8))my -
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EXAMPLES:
1) If < is the limit of means evaluation relation, the relation induced is:

b<?a iff by <ayandby <as (a,beR%).

2) If < is the overtaking evaluation relation,

b<%a iff by <aiand by <as .
3) If < is the evaluation relation with discount parameter 0 < 4 < 1, then

. § )
b-(za iff by <aq andb1+mbz<a1+ma2.

Thus, a player deviating at any one time only if he will derive certain
profit in the foreseeable future, behaves according to the evaluation relation
induced in G? by the limit of means relation. A player deviating only if
he will not “lose” in the future, behaves according to the relation in G*
induced by the overtaking criterion. If there exists ¢ > 0, such that a player
will deviate in the future iff the difference between his present profit and
future loss exceeds ¢, (here -g;‘—__—g; > € iff a; + eaz > by + €ba); then, the
evaluation relation in G corresponding to this behavior is that induced by
the evaluation relation with discount parameter § = 3 .

Remark 3.1. For a supergame G = (G, <1, ..., <x), where for all £, the
evaluation relations are reasonable, and where an equilibrium o exists in
G, define f € F by: “For all i and for all ¢, fi(t) = 0,.” Clearly, f is a
steady equilibrium in G® (even perfect; see the definition in Section 4),
satisfying 6(f) = o. Thus, in a supergame where the single game has an
equilibrium, we are guaranteed the existence of an equilibrium.

Proposition 3.2. Let G = (G, <1,...,<n) be a supergame where the
<; are reasonable evaluation relations. If there exists g € F?, a steady
equilibrium in G2, the derived game, such that 6(g) = o, then there ezists
f € F, a steady equilibrium in G*™ such that 6(f) = 0.

Proof: Given s € S, let 7;(s) € S; satisfy
wi(ri{s), s-4) = max ity 5_4) -

Since g is an equilibrium in G?, there exist v* € § satisfying

(ni(a), 7:(0)) A3 (mi(ri(g(1)), 9-i (1)), mi(ri(*), wimi)) -
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We may assume that if m;(r;{0),0_;) < mi(0), then v! = o, and we use
the notation [a] = (a,e,a...), and (a, [b]) = (a,b,b,b,...).

Define f; € F; for 1 € N as follows.

fi(l) =o: _
4} if there exists T' < t — 1 such that:
) _ s(=---=s(T+1)=o,
FAENSL), o8~ 1) = s-i(T) = 0-;, and 5;(T) # 0;
; otherwise

Then 6(f) = o and f is a G*™ equilibrium, since if (f_;, h;)=if:

1) If mi(0) = mi(ri(o), 0-;), then m;{a) > 7i(o(g—;, hi)(t))} for all t, and
thus, according to (A.2) it will follow that [m;(¢)] = [7i(o] contradicting
irreflexivity.

2) ¥ mi(o) < mi(ri(0),0-;), then let t; be the minimum satisfying
hi(to)(oy0,...,0) # ;. If {Wi(a(f_i,hi)(t))}iil i [7!’,'(0’)], then re-
peated applications of (A.3) yield

o (fois ha)(8))}24, i [malo)] -

But mi(ri(0),0-:) > mi(o(f-i, hi)(20)) and for ¢ > tg, mi(ri(y?),v%;) >
mi(a(f-i, hi)(t)). Applying (A.2),

(ri(ri(0), 03), [mi(ri(y'), 72)]) =i [(milo)]

contradicting the choice of v¢.

Proposition 3.3. Let G*® = (G,<i,...,=y) where <; are reasonable
evaluation relations. If f € F is a steady equilibrium in G, and 6(f) = o,
then there exists a G? stationary equilibrium g € F?, such that 6(g) = 0.

Proof: Suppose not. Then there is an i and 7; € §; satisfying:
1) mi(o—i, 1) > mi(o) .
2) For all s € §, there are t; € S; such that
mi(o—i, 75), [Wi(tiy 8-4)] =i [mi(o)] .
Thus, applying (A.2),
(m(an,-,n), I:I:l_ln mt:iaxr,-(ti,s_,')]‘) =i [mi(o)] -
Define h;, a strategy in G, by

h,(l) =T
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ha(®)(s(1) ... s(t — 1)) = re(F(E)(a(1) ... st — 1)) .
Applying (A.2), we obtain

{milo(f-i, R)EN}EL > [milo)] -
in contradiction to f being an equilibrium. g

Definition 3.4. s € § is a weakly forced outcome® in G if, for every ¢,
there is an r € § such that for all t; € §;, mi(r—;, ;) < m(s).

Thus, in a weakly forced outcome, each player’s payoff is at least as large
as the punishment the other players can inflict on him, that is, at least
miﬂreg maxy,; cs; 1r,-('r_,-, ti).

Example 3.5. Let S; be the set of mixed strategies of i,7 = 1,2. In a
matrix game with a payoff matrix

22 103
30 | 11
7; is the expected payoff of i.
3 w(S)
2
1
L

3The term “individually rational” is by now the established terminology for
this concept.
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Proposition 3.6. If <; is the limit of means evaluation relation in G,
the steady outcomes of steady equilibria are the weakly forced outcomes.

Prooj: There exists g € F, a steady G equilibrium, such that #(g) = o,

iff there exists f € F2, a steady G? equilibrium such that &(f) = o and
this holds iff for no h; € F2 , (0,0) A2 (a(hs, f—5)(t))2_,, i.e., iff for all
1, either m;(r;(0), 0_;) < m;{o) or

mi(ri(¥%),72s) =Bm L [mi(ri(o), o) + (n — Dmi(ra(v),750)] < mi(o)

and this holds iff for every 4, there exists v* € § such that m;(r;(v),v%,) <
mi(o).

Proposition 3.7. Let G®° = (G, <1,..., <) be a supergame with reason-
able evaluation relations. A necessary condition for f € F to be a steady
equiltbrium is that 6(f) is a weakly forced outcome.

Proof: By Proposition 3.3, there exists g € F, a steady equilibrium in
G? such that &(g) = 6(f). If 6(f) is not weakly forced, there exists %
such that for all s € S, n;(r;(s), 8) > m(6(f)). S is compact. Thus, there
exists € > 0 such that for all s € § m;(r:(s),5_;) > 7:(5(f)) + €. Define
h; € Fiz by:

hi(1) = ri(6(£))
hi(2) = ri(g(1)(&-:(f), r:(6(F))))-

Applying (A.1), we obtain:
(mi(o(g-i, h)(®))ies =T (m(8(F)), w6 (F))))

in contradiction to g being a G? equilibrium.

4. Perfect equilibria

The definition of equilibrium as in Section 2 was shown in Section 3 to be
weak. The set of equilibria is too large, and it is natural to introduce further
reasonable restrictions to obtain a stronger characterization. One possible
requirement is that a deviation will prove unprofitable to a player at all
stages of the game, not only at the beginning; thus, under no circumstances
will be induced to change his original strategy.
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Definition 4.1. f € F is a perfect equilibrium if for all 7(1),...,7(T) € §,
the strategy profile f defined by

fi®(s),..., st — 1)) = filt +TY)(r(1),...,7(T),s(1),...,s(t - 1))

is an equilibrium.

Not only is it unprofitable for one player to alter his strategy, but no player
can perform manipulative maneuvers since after each “history,” all players
prefer not to deviate.

The following proposition characterizes the steady perfect equilibrium in
a supergame with evaluation relations determined by the limit of means
criterion. A similar result was discovered independently by Aumann and
Shapley.

Proposition 4.2. If 0 € 8, there is a perfect steady equilibrium f € F
such that 6(f) = o, iff o is a weakly forced outcome.

Proof: Necessity follows from Proposition 3.6. Let ¢ € § be a weakly
forced outcome. Let % be strategies satisfying

max m; (i) < milo)

((* will be the strategy for punishing player ). Define f;(t+-1)(s(1),...,s(t))
and P(s(1),...,s(t)) inductively as follows. (P(s(1),...,s(z)) is inter-
preted as the set of players deserving punishment after the history

(s(1),...,8(8)):

P =0, and fi(l)=o0;,
{7’} i s—i(t) = ’Tii, P(s(1)7 sy S(t - 1)) = {Z},
and %Zi:: w(s(k)) > w(o) + %
P(s{1),...,s(t)) = { {3} if P(s(1),...,8(t~1))=0& s_;(t)=o0—1i
but si(t) # os & L35 mi(s(k)) = mi(o) + ﬁ
9 otherwise

=N

otherwise

4 D)), 5(8) = {'rf if 5 #14and P(s(1),...,8(t)) = {j}
Let r(1),...,7(T) € § ; denote
Fi0) = A(T + D(r(D), .., (1))
fi(t)(s(l): cee ,S(t - 1)) = fi'(t + T)(T(l)r s :T(T), 5(1): e S(t - 1)) .

We will show that f is an equilibrium. The following two lemmas will
complete the proof. g
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Lemma 4.3. There exists Ty such that for all t > T1, o(f)(t) = 0.

Proof: If P(r(1),...,7(T)) = 0, then o(f)(t) = ¢ for all ¢ > 1. If
P(r(1),...,7(T)) = {j}, then

1

T
Tt (kz=:1 mi(r(k)) + fﬂ'j(’r"')) <

4=

T
iy (Z xi(r (k) + twj(a))

k=1

T+t Z=:7r](r(k )+ 7o)

1
T+1i

<

+m;(e)
for sufficiently large ¢. ¢

Lemma 4.4. Let h; € F;. For every ly, there is t > ty such that

t

) ) 1
t gm(o(f_,:,hi)(k)) <mila) + Vi

Proof: Tt suffices to consider the case t; > Ty, where Ty is given by
Lemma 4.3; note also that ¢t > T} implies P(s(1),...,s(t)) C {i}. H for
all £ > Ty, i does not deserve punishment after {a(f_,,h J(k)}_,, then
0(f-iyhi) = o for all £, < k, and

o=

> milo(foi, ho)(k)) zm(a(fmnh)(k))Jr (t-to)mi() < mi(0)+— 7
k=1

for sufficiently large {. If there exists tp < t; such that ¢ deserves punish-
ment after {o(f_;, hs)(k)}2 k=1 » then

%Z (o(foi ha)(kY) = 2 Zﬂz(o(f—nh)(k)%r (t— t1)1r=(0)<7h(0)+7

for sufficiently large t. g
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