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The analysis of the “agreeing to disagree” type results is unified by considering
functions which assign to each set of states of nature the value “True” or “False”.
We identify properties of such functions, being preserved under union, under dis-
joint union and under difference. The property of being preserved by disjoint union
is used to gemeralize Aumann’s, Milgrom and Stokey’s and other results. Another
proposition refers to all of these properties and implies Samet’s generalization of
Aumann’s result to non-partitional information structures. The two generalizations
are used for proving some additional “agreeing to disagree” type results. Journal of
Economic Literature Classification Number, 026.  © 1990 Academic Press, Inc.

1. INTRODUCTION

Aumann, in [1], presented a formalization of the notion of common
knowledge and used it to prove that it is impossible “to agree to disagree.”
That is, given that two players, 1 and 2, agree on the priors, it is impossible
that it is common knowledge among the two players that player 1 assigns
to some event the probability o, and player 2 assigns to the same event the
probability a, where o, #«,.
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Aumann’s paper was the 7starting point for a thought provoking
literature, which includes also the following two results:

1. Milgrom and Stokey, in [8], proved a result which is often inter-
preted as referring to the impossibility of speculative trade. Assume that
two traders agree on an ex-ante efficient allocation of goods. Then, after
the traders get new information, there is no transaction with the property
that it is common knowledge that both traders are willing to carry it out.

2. Bacharach in [3] and Samet in [10] explored the validity of
Aumann’s result where the information structures can be of more general
form than in Aumann’s model (see also [11]). Recall that in Aumann’s
model, a player’s information structure is described by a partition of the
state space. That is, given a particular state of nature, a player’s informa-
tion is captured by the element of the partition which contains that state
of nature. Samet showed that Aumann’s result continues to hold under
weaker assumptions on agents’ knowledge that do not necessarily imply
that the information structure is described by a partition. .

In this note we would like to comment on these developments. We wish
to clarify the logic of the “agreeing to disagree” type results, so as to better
understand the relations between the work of Aumann, Milgrom and
Stokey, Bacharach, and Samet. In particular, we attempt to unify the
exposition of these results by tracing them back to properties of functions
defined over sets of states of nature (events).

The main observations of the paper are made apparent by considering
the following two functions which are defined over sets of states and take
the value “True” or “False”:

J1(X) =True iff “the probability of event Z conditional
on the event X is «”

f>(X)=True iff “given the event X,
player i prefers action a to action b.”

Note that both f, and f; are such that if they take the value “True” for
each of two disjoint sets X and ¥, then they take the value “True” for
X v Y. As it turns out, the fact that f; has this property provides the main
step in proving Aumann’s result in a world in which the information struc-
tures are described by partitions. Similarly, the main step in the proof of
Milgrom and Stokey’s result owes to the fact that f, has this property.

Note, however, that the functions f, and f, differ with respect to the
following property: if X contains Y and both f,(X) and f,(Y) are “True”,
then f,(X — Y) is “True,” but if £>(X) and f>(Y) are “True,” then f5,(X — ¥)
is not necessarily “True.” Again, as will be shown, this property of f;
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together with the former property provides the main step in proving the
validity of Aumann’s result when the information structure is not
necessarily partitional. The fact that £, does not have this property provides
a clue to why Milgrom and Stokey’s result fails to hold in a world in which
the information structure is not described by a partition.

After presenting the formal concepts in Section 2, we proceed in Section
3 to present a generalization of Aumann’s result which has as a special case
Milgrom and Stokey’s result. Following Samet we prove an analogous
result for a more general information structure (Section 4) and then we
explain why Milgrom and Stokey’s result may not hold for such informa-
tion structures. The usefulness of the two generalizations is demonstrated
by additional examples of “agreeing to disagree” type results.

We would like to emphasize that the purpose of this note is merely to
demonstrate the logical structure of the “agreeing to disagree” type results.
As such it is only a comment on the existing literature and it is not meant
to have any message about the interpretation of the notion of common
knowledge (see [9]). The most closely related is the recent work of
Geanakoplos [7]. In some sense the points that we make are dual to his
results. He was interested in identifying the informational structures for
which different “agreeing to disagree” type results hold, while we are inter-
ested in identifying the types of theorems which are true only in Aumann’s
framework and those theeorems which hold in Samet’s framework as well.

2. THE MODEL

Let Q be a finite space of states of nature. Let i=1, 2 be two players.
Player i’s information structure is a function P, which assigns to all we @
a non-empty subset of €. The interpretation of the statement P,(w)< S is
that at w agent i knows that the event S occurred. We shall say that i has
a partitional information structure if there is a partition of £ such that, for
all , the set P,(w) is the element in the partition which includes w.

A set E is called self evident if for all we E and for both i, P,(w)<E. It
is said that the set S is common knowledge at w if there exists a self evident
set E such that we F and Ec S. As was noted in [10], this definition is
equivalent to Aumann’s definition. Note that, since w € P,(®), a self evident
set E satisfies that for both i, E={),, g P;(®).

We would like to investigate the possibility of statements of the type: “it
is common knowledge that 1 thinks that there is a probability «, that event
Z has occurred while 2 thinks that the probability is «,.” To formalize such
statements, we consider the set F of functions which are defined over the
set of subsets of 2 and which assign to every subset of £2 either the value
“True” (denoted by T) or the value “False.” For fe F the interpretation
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of “f(P;(w))=T” is that i knows that the function f gets the value “True”
at w.

We say that f is preserved under union if for all sets R and S such that
f(R)=T and f(S)=T we have f(Ru S)=T. We say that f is preserved
under disjoint union if for all disjoint sets R and § such that f(R)=T and
f(8)=T we have f(Ru S)=T. We say that f is preserved under difference
if for all R and S such that R> S, f(R)=T, and f(S)=T we have
f(R—8)=T.

Following are examples which demonstrate the concepts introduced
above. The first two examples generalize Aumann’s and Milgrom and
Stokey’s results. In both examples & is endowed with probability measure

““ ”

pr.

ExaMpPLE 1. Let ¢ be a random variable defined on € and let « be a
number. Define the function f, , by f, ,(X)= T iff the expectation of ¥
given X is a. Observe that f, , is preserved under both disjoint union and
difference but not under union. If the expectations of y given the disjoint
sets X, and X, are «, hen the expectation of ¥ given X, v X, is a as well;
if the expectations of  given sets X, and X, c X are a, then the expecta-
tion of Y given X, — X, is also a.

Note that Aumann’s setup is a special case of example 1. Let ¥ be a
subset of £ and denote by pr( Y| X) the probability of ¥ conditional on X.
Consider the random variable ¥ =1, (where 1, is the characteristic func-
tion which gets the value 1 if w € ¥ and 0 otherwise). Obviously, the expec-
tation of { given X is the posterior probability pr(Y|X). Thus, f, ,(X)=T
iff pr(Y| X)=a.

ExaMpPLE 2. Define the function f, , by £, ,(X)= T iff the expectation
of y given X is strictly above o (or, alternatively greater or equal to «).
Observe that f, , is preserved under disjoint union but not under difference
or under union.

Note that Milgrom and Stokey’s setup is a special case of Example 2. Let
C be a set of consequences. Define a contingent contract to be a function
from ©Q into C. Let A be the set of all contingent contracts. Each of the
players has a von Neumann-Morgenstern utility function u; defined on
Cx 8, ie., u;(c, w) is player i’s utility of the consequence ¢ at state w.
For any aeA let U,(a) be the random variable defined by
U (a)w)=u;(a(w), w). Let a, be A, define ¥, by ¥,=U;(a)— U,(b), and
let « =0. Thus, f, ,,(X)= T iff the expectation of U;(a) conditional on X is
strictly greater than the expectation of U,(b) conditional on X.

In the next two examples we do not use any probability space on £2.
Instead we refer to an arbitrary function M from £ into a set N.
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EXaMPLE 3. Let M(w) be a function from €2 into the set of real num-
bers and let « be a number. Define the function f,(X) = T iff « is the median
of medians, i.e., the middle of the interval of medians of the vector of
numbers (M(w)),.». To be more precise, a = (L + H)/2 where

H =min {f: the proportion of numbers in (M(w)),, . x above B, is below §}
L =max {f: the proportion of numbers in (M(w)),,. x below B, is above }.

The functien £, is preserved both under disjoint union and under difference
but not under union.

ExaMPLE 4. Let M(w) be a function from 2 into the set of real
numbers and let n be a number. Define the function f,(X) =T iff n is the
minimum of the function M over the set X. Here, f, is preserved under
union but not under difference.

ExaMpPLE 5. Let M(w) be a function from £2 into a set N and let ne N.
Define the function f,(X) = T iff there exists an we X such that M(w)=n.
Define g,(X)=T iff f,(X)=False. Both f, and g, are preserved under
union but only g, is preserved under difference.

Finally, let f and g be functions in F and define the conjunction function
S g(X)=True iff f(X)=g(X)=True. Note that if f and g are preserved
under any of the properties union, disjoint union, or difference, then the
function fn g is preserved under the respective property.

3. PARTITIONAL INFORMATION STRUCTURES

For the case of partitional information structures, the next proposition
unifies a family of “agreeing to disagree” type results, including Aumann’s
and Milgrom and Stokey’s. It is related to a result due to Cave in [5]:

PROPOSITION 1. Assume that the information structures of the two
players are partitional. If f and g are two functions in F such that
(1) for no S bothf(S)=T and g(S)=T
(2) f and g are preserved under disjoint union

then there is no w* for which the set {w: f(P\(w))=T and g(P,(w))=T}
is common knowledge at w*.

Proof. Suppose that such an w* exists. Then, by the definition of
common knowledge, there is a self evident set E with w* ¢ E such that
Ec{w: f(P,(0})=T} and Ec {w: g(P,(w))=T}. Since the set E is self
evident, it is a union of disjoint sets at which f and g get the value “True”
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and since f and g are preserved under disjoint union, f(E)=g(E)=T,
a contradiction to (1). 1

The proposition implies immediately Aumann’s “agreeing to disagree”
result that there is no  at which it is common knowledge that player 1
believes that the posterior of X given his information is «; and player 2 dis-
agrees with him and believes that the posterior of X given what he knows
is a, # «,. More generally, by applying Proposition 1 to Example 1, we get

CoNcLUsION 1. Let  be a random variable on © and let o, and a, be
two distinct numbers. There is no ©* at which it is common knowledge that,
conditional on his information, 1 believes that the expectation of Y is a, and,
conditional on his information, 2 believes that the expectation is ;.

Proof. Recall from Example 1 that f, ,(X)= T ifl the expectation of Y
given X is a. Note, first, that f,, , and f,, , cannot take the value T at the
same set and, second, that they are preserved under disjoint union. There-
fore, the conclusion follows from Proposition t. ||

Now, Aumann’s “agreeing to disagree” result is a special case of Conclu-
sion 1. To see this, recall from Example 1 that the posterior probability
pr(Y|X) is the expectation of the random variable § =1, conditional on
X and hence f, x(Y)=Tiff pr(X|Y) =0

Proposition 1 also implies Milgrom and Stokey’s result. More generally
by applying Proposition 1 to Example 2 we get:

CONCLUSION 2. Let y be a random variable on  and o a number. Then
there is no w* at which it is common knowledge that, conditional on his
information, 1 believes that the expectation of Y is strictly above and,
conditional on his information, 2 believes that the expectation of ¥ is
below c.

Proof. Define f, ,(X)=T iff the expectation of y given X is strictly
above « and define g, ,(X)= T iff the expectation of y given X is (weakly)
below a. Note, first, that f, , and g, , cannot get the value T at the same
set and, second, that they are preserved under disjoint union. Therefore,
the conclusion follows from Proposition 1. |I

Note, however, that it is possible that at ©* it is common knowledge
that player 1 believes that the expectation of ¥ is o and player 2 believes
that it is different from o. A simple example is 2= {w,, w,} with equal
probabilities, P (@)= and Py(w,) = {®;} Py(w;)= {w,}, and y(w,)=1
¥(w,)=2. Then, it is common knowledge that player 1 believes that the
expectation of  is 1.5 and that player 2 believes that it is 1 or 2.

To address Milgrom and Stokey’s resuit, recall the setup described
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immediately after example 2. Recall that U,(q) is the random variable
defined by U, (a)(w)=u,{a(w), w). Thus, E[U,(a)| X] is player i's expected
utility of the contract a conditional on the set X. Define a contingent
contract b to be ex-ante efficient if there is no contract z satisfying that, for
both i, E[U;(a)]> E[U,(b)]. Milgrom and Stokey’s result is that if 5 is
ex-ante efficient, then there is no w* at which the set

D* = {w: E[U,(a)| P,(w)] > E[U,(b)| P,(w)] for both i}

is common knowledge. Assume to the contrary that there is w* and a
self evident set D such that w* € D = D*. From the definition of self evident
set, for all weD, P;(w)<DcD* Therefore, for all weD and for
both i, E[U,(a)— U;(b)| P;(w)]>0. From the ex-ante efficiency of the
contract b, and from E[U,(a)- U,(b)|P,(w)}]=>0, it follows that
E[U(a)— Uy (b)| Ps(w)] £0. Defining y = U,{a)— U,(b), we get that for
all we D, E[y | P\(w)] >0 and E[y| P,(w)] <0. Recall that D is a self evi-
dent set and, thus, it is common knowledge at w* that E[y|P,(w)] >0
and E[y| P,(0)] <0, a contradiction to conclusion 2.

Remark. Milgrom and Stokey’s result was extended to other theories
of decisions under uncertainty in [3] and [6]. Actually, it is clear from
Conclusion 2 that Milgrom and Stokey’s result is valid for any theory of
choice under uncertainty as long as it satisfies the condition that, if the
contract a is preferred to the contract b given two disjoint sets X and Y,
then a is also preferred to b given XU Y.

Proposition 1 provides a scheme for producing more “agreeing to
disagree” type resuits. For example:

CONCLUSION 3. Let M(w) be a function from Q into the reals and let 1,
and a, be two distinct numbers. Then, there is no w* such that it is comme.
knowledge at w* that player 1| thinks that the median of medians is «, and
player 2 thinks that the median of medians is o.,.

CoONCLUSION 4. Let M(w) be a function from Q into the reals and let «,
and a, be two distinct numbers. Then there is no w* such that it is common
knowledge at w* that player 1 thinks that the minimum of M over the set of
possible states is o, and player 2 thinks that the minimum of M over the set
of possible states is a,.

Conclusion 4 can be used to analyze Bacharach’s “detective” example
(see [2]). Assume that two competing detectives are looking for the
suspect in a criminal case. From conclusion 4 we get that it is impossible
that it is common knowledge that the height of the shortest suspect of
detective 1 is #,, and the height of the shortest suspect of detective 2 is
nyFn,.
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Applying proposition 1 to example 5 allows us to conclude a similar
“agreeing to disagree” result: it is impossible that it is common knowledge
that there is a bespectacled individual among he suspects of detective 1 but
not among the suspects of detective 2.

4, NON-PARTITIONAL INFORMATION STRUCTURE

Following Bacharach and Samet we turn now to a discussion of the
“agreeing to disagree” type results for information structures which are not
partitional but satisfy only the following conditions for both i:

(P-1) For all we 2, we P;(w). That is, if i knows the set X then X
is true.

(P-2) For all @€ and for all &’ € P;(w), P{w')<= P{w). That is,
if i knows X he also knows that he knows X.

Let P,= {S: 3w such that P,(w)=S}. As shown by Samet, conditions
{P-1,2) imply that for all R and S in P;,, Rn S is a union of elements
in P;.

PROPOSITION 2. Suppose that P, and P, satisfy conditions (P-1, 2) and
let f and g be two functions in F such that

(1) there is no S for which f(S)=g(8S)=T
(2) fand g are preserved under disjoint union

and either
(3) f and g are preserved under difference

or

(3') fand g are preserved under union.

Then, there is no w* at which the set {w: f{P{w))=T and g(P,(w))=T}
is common knowledge.

Proof. Suppose to the contrary that there is a w* € Q and a self evident
event E such that w* e Ec {w: f(P(w))=T and g(P,(w))=T}. We shall
argue that f(E)=g(E)=T and thus get a contradiction. Note that since
P, satisfies condition (P-1) and the set E is self evident, then
E=E VE,u --- VE; where for all j, E; is in P,. Also, for all E,
S(E)=T. If f satisfies the union property it follows immediately that
f(E)=T. For the case that f satisfies the difference property we will
show by induction on the number of eclements in D that if
D=D,uD,u --- uDyg, where, for all k, D, is in P, and f(D,)=T, then
f(D)=T. Without loss of generality we can assume that for no &k and
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k' is the set D, contained in D,. By the inductive hypothesis
f(Dyu - uDg)=T. If Do=D,n(D,u --- UDg)=¢, then since f is
preserved under disjoint union it follows that f(D)=T. Otherwise D,
is a union of clements in P, and the number of states in D, is strictly
smaller than in D. Thus, by the inductive hypothesis, f(Dy)= T. Since f
is preserved under difference, f{((D, U --- UDg)—Dy)=f(D,—Dy)=T,
and since f is preserved under disjoint union, f(D)=T. |

Note that Proposition 2 can be strengthened in two senses. First, we can
replace the requirement that either (3) or (3') hold with a weaker con-
dition that for all 0 and R such that f(@)=T and f(R)=7T, either
[f(QuR)=T] or [f(QNR)=T implies /(@—R)=T or f(R-Q)=T].
Second, it is actually straightforward that for functions which are preserved
under union, Proposition 2 holds even for information structures which
satisfy only condition (P-1).

It follows from Proposition 2 that, since the functions in Conclusions 1
and 3 are preserved under difference as well, these conclusions continue to
hold for information structures that satisfy conditions (P-1, 2) even if they
are not partitional. In particular, as Samet showed, Aumann’s result holds
in this case as well. (Note that the proof of Proposition 2 used the finite-
ness of 2, while Samet extended Aumann’s result for the more complicated
setting of infinite state space.) Conclusion 4 holds since the functions used
in its statement are preserved under union.

The functions considered in Conclusion 2 are not preserved under dif-
ference or under union. Indeed, the following example demonstrates that
Conclusion 2 is not necessarily true if the information structure is not
partitional. To see this consider the space 2= {w,, ®w,, w;} where all
states are equally likely. Assume

P(w)= {wl, @, ws}
Py(w)={w;, w,}, Py(w;) = {®,}, Py(w;) = {w,, w;}.

Both P, satisfy conditions (P-1,2) and P, is not partitional.

A CoUNTER EXAMPLE TO CONCLUSION 2. Let i be the random variable
Y(w,)=1 and Y(w,) =Y(w,) =0 and pick « = 0.35. For all it is common
knowledge that 1 believes that the expectation of  is { (which is less than
0.35) and that 2 believes that the expectation of ¥ is 0.5 or 1 (which are
strictly above 0.35).

A more direct counter example for Milgrom and Stokey’s result is as
follows.

Let B={a, b} and let u, and u, be von Neumann-Morgenstern utilities
presented by the following table:
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Player 1 Player 2
a b a b
w0, 3 0 0 3
W, 0 5 5 0
W3 3 0 0 3

The contingent contract x(w)=b is ex ante efficient, but for all @ it is
common knowledge that y(w)=a is preferred by both players to x(w).

The observation that Conclusion 2 does not hold for the information
structure without partitions appears first in [4].

5. CONCLUSION

“Agreeing to disagree” type results can be traced back to simple proper-
ties of functions defined over subsets of the state space: being preserved
under union, disjoint union, and difference. In this paper we exposed some
of the logic of those results by showing that different properties of informa-
tional structures are closely linked with different properties of the functions
used in the statements of the propositions. As a byproduct of this analysis
we showed that these observations can be used not only to unify the proofs
of existing results, but also to generate new results of this type.
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