The Electronic Mail Game: Strategic Behavior
Under “Almost Common Knowledge”

By ARIEL RUBINSTEIN*

The paper addresses a paradoxical game-theoretic example which is closely
related to the coordinated attack problem. Two players have to play one of two
possible coordination games. Only one of them receives information about the
coordination game to be played. It is shown that the situation with “almost
common knowledge” is very different from when the coordination game played is

common knowledge.

A very basic assumption in all studies
of game theory is that the game is “com-
mon knowledge.” Following John Harsanyi
(1967), situations without common knowl-
edge are analyzed by a game with incom-
plete information. A player’s information is
characterized by his “type.” Each player
“knows” his own type and the prior distri-
bution of the types is common knowledge.
Jean-Francois Mertens and Samuel Zamir
(1985) have shown that under quite general
conditions one can find type spaces large
enough to carry out Harsanyi’s program and
to transform a situation without common
knowledge into a game with incomplete in-
formation in which the different types may
have different states of knowledge. Har-
sanyi’s method became the cornerstone of all
modern analyses of strategic economic be-
havior in situations with asymmetric infor-
mation (i.e., most of the theoretical Indus-
trial Organization literature).

What does it mean that the game G is
“common knowledge”? Following David
Lewis (1969), Stephen Schiffer (1972), and
Robert Aumann (1976), this concept has
been studied thoroughly by relating it to
concepts of “knowledge” and “probability”
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(for a recent presentation of this literature
see Ken Binmore and Adam Brandenberger,
1987). Intuitively speaking it is common
knowledge between two players 1 and 2 that
the played game is G, if both know that the
game is G, 1 knows that 2 knows that the
game is G and 2 knows that 1 knows that
the game is G, 1 knows that 2 knows that 1
knows that the game is G, and 2 knows that
1 knows that 2 knows that the game is G
and so on and so on.

One of the main difficulties with this intu-
itive definition (and with the formal defini-
tions which capture this perception) is that
even “simple” sentences like “I do not know
that you do not know that I know that you
do not know that I know” are very difficult
to visualize, thus making an assessment of
their validity problematic. Therefore it would
be interesting to understand whether a
game-theoretic informational structure, re-
ferred to as “almost common knowledge,” in
which only a finite (but large) number of
propositions of the type “l1 knows that 2
knows that 1 knows...that the game is G”
are true, is very different from the situation
where the game G is common knowledge. In
this short paper I will present a simple ex-
ample of a situation with “almost common
knowledge” of the game. The situation is
analyzed using, as a tool, the idea of a game
with incomplete information. It is shown
that the game-theoretic “prediction” for the
“almost common knowledge” situation is
very different from the situation with com-
mon knowledge.



386 THE AMERICAN ECONOMIC REVIEW

The example is similar to the “coordi-
nated attack problem” which is well known
in the distributed systems literature.! A
description of the problem and a compari-
son with this paper analyzed appears in Sec-
tion IV.

1. Coordination Through Electronic Mail

Two players, 1 and 2, are involved in a
coordination problem. Each has to choose
between two actions 4 and B. There are two
possible states of nature, a and b. Each of
the states is associated with a payoff matrix
as follows:

The game G,
A B
A M, M 0,—L
B -L,0 0,0
state a

probability 1 — p

The game G,
A B
A 0,0 0,-L
B -L,0 M, M
state b
probability p

In the state of nature a(b) the players get
a positive payoff, M, if both choose the
action A(B). If they choose the same action
but it is the “wrong” one they get 0. If they
fail to coordinate, then the player who played
B gets — L, where L > M. Thus, it is dan-
gerous for a player to play B unless he is
confident enough that his partner is going to
play B as well. The state a is the more likely
event; b appears with a priori probability of
p<1/2

The information about the state of nature
is known initially only to player 1. Without
transferring the information, the players

11 should like to thank John Geanakopolos for refer-
ring me to the “coordinated attack problem.”
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cannot achieve an expected payoff higher
than (1— p)M. If the information could be-
come common knowledge they would be able
to achieve the payoff M. However, imagine
that the two players are located at two dif-
ferent sites and they communicate only by
electronic mail signals. Due to “technical
difficulties” there is a “small” probability
¢> 0, that the message does not arrive at its
destination. At the risk of creating discord,
the electronic mail network is set up to send
a confirmation automatically if any message
is received, including not only the confirma-
tion of the initial message but a confirmation
of the confirmation; and so on. To be more
precise, it is assumed that, when player 1
gets the information that the state of nature
is b, his computer automatically sends a
message (a blip) to player 2 and then player
2’s computer confirms the message and then
player 1’s computer confirms the confirma-
tion and so on. If a message does not arrive,
then the communication stops. No message
is sent if the state of nature is a. At the end
of the communication phase the screen dis-
plays to the player the number of messages
his machine has sent. Let T; be a variable
for the number of messages i’s computer
sent (the number on i’s screen).

Notice that sending the messages is not a
strategic decision by the players. It is an
automatic device carried out by the comput-
ers. The designer of the system sets up the
communication network between the players
and they can only choose between 4 and B
after the communication phase has ended.

If the two machines exchange an infinite
number of messages, then we may say that
the two players have common knowledge
that the game is G,. However, since only a
finite number of messages are transferred,
the players never have common knowledge
that the game they play is G,.

In choosing between 4 and B after the
end of the communication phase, player 1
(and similarly player 2) faces uncertainty:
given that he sent 7; messages he does not
know whether player 2 did not get the Tjth
message, or whether player 2 got the Tjth
message, but the 7th confirmation has been
lost. Any number on the screen corresponds
to a state of knowledge not only about the
state of nature but also about the other
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player’s knowledge. For example if player
1’s computer sent two messages it means
that:

K (b)— 1 knows that b

K, K,(b)— 1 knows that 2 knows that b
(by the fact that he has received confirma-
tion of his first message). However, it is not
true that K, K,K,K,(b)—1 does not know
that 2 knows that 1 knows that 2 knows that
b. Player 1 assigns probability z=c¢/[e+
(1—¢)e] to T,=1 and (1-2z) to T,=2.
Therefore player 1 believes that:

with probability 1-z K,K;K,(b) and

with probability z that

2 believes that
with probability 1-z K,K,(b) and
with probability z that
1 believes that
with probability z 2 believes that with prob-
ability (1— p)/(1— pe), a, and with proba-
bility (1 — z), 2 knows that b.

The statements of higher order are even
more complicated. Notice that, under the
model’s assumption that player 1 gets accu-
rate information about the state of nature,
“x” and “K,(x)” are two equivalent state-
ments.

Similarly, any number on a player’s screen
at the end of the communication stage corre-
sponds to a sequence of propositions de-
scribing the player’s knowledge about the
state of nature, about his opponent’s belief
about the state of nature, about his oppo-
nents’s belief about his belief about the op-
ponent’s belief about the state of nature and
so on. The larger is T}, the more statements
of the type K,K,K,...K,K,(b) are true,
and the closer we are to the common knowl-
edge situation.

How could we analyze the situation when
the two players have the numbers T; and T,
on their screens? To calculate his best action
when T; = 2, for example, player 1 may have
to form beliefs about player 2’s actions when
T, is 1 or 2. The optimality of these would
have to be checked given player 1’s behavior
when T,=1, 2, or 3, and so on. Harsanyi’s
method suggests that we analyze a situation
given any pair of numbers on the screens, as
part of a game of incomplete information
which I will refer to as “the electronic mail
game” (to distinguish from the coordination
games). The set of types in the electronic
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mail game is the set of natural numbers and
the distribution of the pairs of types is de-
duced from the electronic mail technology
(namely, the probability of (73,7,) being
respectively (0,0), (n+1,n), and (n+1,
n+1) are 1— p, pe(1—¢)®", and pe(1—
€)2"*1 respectively). Define player i’s strat-
egy in the electronic mail game, S;, to be a
function from the set of natural numbers
0,1,2,...into the action space { 4, B}. Then
S;(t) is interpreted as i’s action if his ma-
chine sent ¢ messages.

II. The Analysis of the Electronic Mail Game

PROPOSITION 1: There is only one Nash
equilibrium in which player 1 plays A in the
state of nature a. In this equilibrium the play-
ers play A independently of the number of
messages sent.

PROOF:

Let (S,, S,) be a Nash equilibrium such
that S;(0) = A. We will prove by induction
that S;(t)=S,(t)=4A4 for all ¢. If T,=0
then player 2 did not get a message. He
knows that it might be because player 1 did
not send him a message (this could occur
with probability 1 — p) or because a message
was sent but did not arrive (this happens
with probability pe). In the first case, player
1 plays 4 (S;(0) = A). If player 2 plays 4,
then, whatever S,(1) is, player 2’s expected
payoff is at least; [(1— p)M + pe0]/[(1— p)
+ pe] and if he plays B he gets at most
[-LA-p)+ peM]/[(1— p)+ pe). There-
fore it is strictly optimal for 2 to play 4, that
is S,(0) = 4.

Assume now that we have shown that, for
all T, <1, players 1 and 2 play 4 in equilib-
rium. Assume 7;=¢. Player 1 is uncertain
whether 7, =t (in the case where player 2
received the ¢th message but 2’s 7th message
was lost) or 7, =¢—1 (in the case where 2
did not receive the rth message). Given that
he did not receive confirmation of his tth
message, his conditional probability that T,
=t—1is z=¢/[e+(1—¢)e]>1/2. Thus it
is more likely that player 1’s last message did
not arrive than that player 2 got the mes-
sage. (This fact is the key to our argument).
By the inductive assumption, player 1 as-
sesses that, if 7, =¢ —1, player 2 will play A4.
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If player 1 chooses B, player 1’s expected
payoff is at most z(— L)+ (1—z)M. If he
chooses A, then his utility is 0. Given that
L > M and since z>1/2, his only best ac-
tion must be 4. Thus S,(z) = A. Similarly
we show that S,(r) = 4.

Thus even if both players know that the
actual played coordination game is G, and
even if the noise in the network (the proba-
bility €) is arbitrarily small, the players ig-
nore the information and play 4. The best
expected payoff the players can obtain in
any equilibrium is still (1— p)M, just as if
no electronic mail system existed!

Remark 1: Consider the mechanism de-
scribed above but with the addition that,
after a commonly known fixed finite number
of messages, T, the system stops, if it has not
stopped before. If &(—L)+(1—e)M>0
then there is an equilibrium in which each
player plays B if he receives confirmations
of all his messages. The expected payoffs of
this equilibrium, conditional on the state b
are: (1—€)"M to the last player who is sup-
posed to get a message and (1—¢)7 !
[e(— L)+ (1 —€e)M] to the other player.

Notice that these two numbers are decreas-
ing in T and therefore the only “efficient”
schemes might be those with T=1 and T'= 2.
The mechanism with T=1 is a better scheme
for player 2 and T =2 is a better scheme for
player 1. If the communication channel is so
noisy that e&(—L)+(1—¢)M <0 then the
efficient equilibrium is the one where the
messages are ignored (the argument is simi-
lar to the proof of the proposition).

II1. The Coordinated Attack Problem

As was mentioned in the introduction the
electronic mail game is strongly related to
the coordinated attack problem known in
the distributed systems folklore. The prob-
lem as described in Joseph Halpern (1986, p.
10) is the following:

Two divisions of an army are camped
on two hilltops overlooking a common
valley. In the valley awaits the enemy.
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It is clear that if both divisions attack
the enemy simultaneously they will win
a battle, whereas if only one division
attacks it will be defeated. The divi-
sions do not initially have plans for
launching an attack on the enemy, and
the commanding general of the first
division wishes to coordinate a simul-
taneous attack (at some time the next
day). Neither general will decide to
attack unless he is sure that the other
will attack with him. The generals can
only communicate by means of a mes-
senger. Normally, it takes the mes-
senger one hour to get from one en-
campment to the other. However, it is
possible that he will get lost in the dark
or, worst yet, be captured by the en-
emy. Fortunately, on this particular
night, everything goes smoothly. How
long it will take them to coordinate an
attack?

Suppose the messenger sent by gen-
eral 1 makes it to general 2 with a
message saying “Let’s attack at dawn.”
Will general 2 attack? Of course not,
since general 1 does not know he got
the message, and thus may not attack.
So general 2 sends the messenger back
with an acknowledgment. Suppose the
messenger makes it. Will general 1 at-
tack? No, because now general 2 does
not know he got the message, so he
thinks general 1 may think that he
(general 2) didn’t get the original mes-
sage, and thus not attack. So general 1
sends the messenger back with an ac-
knowledgment. But of course, this is
not enough either. I will leave it to the
reader to convince himself that no
amount of acknowledgments sent back
and forth ever guarantee agreement.
Note that this is true if the messenger
succeeds in delivering the message ev-
ery time.

The question asked in the quoted para-
graph is whether there is a common knowl-
edge of the attack plan at the end of the
information transmission stage. The above
“communication protocol” cannot result in
the players’ having common knowledge
about the time of the attack. However, the
fact that the generals could not achieve com-
mon knowledge does not exclude the possi-
bility that with positive probability they will
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both attack at dawn. This sounds plausible
especially if the probability of a messenger
failure is very small.

For this reason it is interesting to analyze
the problem in the explicit form of a game.
This is the minor contribution of this paper.
In order to address the problem as a game,
we need to add more structure to the prob-
lem and, in particular, we have to specify the
probability conditions under which general 1
decides to initiate an attack at dawn. In
terms of Section II, state b can be inter-
preted as the conditions which make an at-
tack at dawn likely to succeed, while state a
is the “status quo” state. Action B is “at-
tack at dawn” and action A is the default
action. The payoffs in Section I represent an
assumption that, in case of an uncoordinated
attack, only the general who attacks loses. If,
alternatively, we assume that both generals’
utilities are — L if an uncoordinated attack
is launched, then there is an equilibrium in
which general 2 attacks as soon as he gets at
least one message, provided that ¢ is small
enough (less than M/(M + L)). This last
fact emphasizes the importance of address-
ing the problem within a game-theoretic
framework.

IV. Final Comments

A. Is “Almost Common Knowledge”
Close to “Common Knowledge”?

It should be emphasized that the game
about which knowledge is being hypothe-
sized in the above is the coordination game
and not the electronic mail game. One is
concerned with what the two players do or
do not know about the payoffs in the coordi-
nation game and with what the players do or
do not know about the knowledge of their
opponent. The story of the interchange of
messages by electronic mail is intended only
to provide a precise, albeit rather special,
model of how knowledge on those questions
may come to be shared by the players.

The main message of this paper is that
players’ strategic behavior under “almost
common knowledge” may be very different
from that under common knowledge. To em-
phasize, by “almost common knowledge” 1
refer to the case when the numbers on the
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screens are “ very large.” Then a “ very large”
number of statements of the type “player i
knows that player j knows that...the coor-
dination game is G,” are correct. Still, the
players will not coordinate on the action B
whereas they are able to coordinate on the
action B if it is common knowledge that the
coordination game is G,.

B. The Electronic Mail Game as a
Perturbed Game

Selten’s perfection definitions and the
Kreps-Milgrom-Roberts-Wilson (1982) ap-
proach used small perturbations in a game in
order to select an equilibrium in a game with
multiplicity of equilibria and to create new
equilibria in the absence of a reasonable
equilibrium. If we think of ¢ as being small
then the noisy electronic mail game is a
perturbation of a non-noisy electronic mail
game (the electronic mail game with &= 0).
The non-noisy game has several equilibria
(since it is just a coordination problem) how-
ever the perturbation unfortunately excludes
the more reasonable equilibria. Notice that
the difference between a game and a per-
turbed version of the game has already been
demonstrated many times in the past and I
feel less paradoxical about this as compared
to the paradoxical features of the present
example.

C. The Paradoxical Aspect of the Example

What would you do if the number on
your screen is 17? It is hard to imagine that
when L is slightly above M and ¢ is small a
player will not play B. The sharp contrast
between our intuition and the game-theo-
retic analysis is what makes this example
paradoxical.

The example joins a long list of games
such as the finitely repeated Prisoner’s
Dilemma, the chain store paradox, and
Rosenthal’s game, in which it seems that the
source of the discrepancy is rooted in the
fact that in our formal analysis we use math-
ematical induction while human beings do
not use mathematical induction when rea-
soning. Systematic explanation of our intu-
ition that we will play B when the number
on our screen is 17 (ignoring the inductive
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consideration contained within Proposition
1’s proof) is definitely a most intriguing
question.

D. Games with Incomplete Information

As mentioned earlier the situation with-
out common knowledge is analyzed, a la
Harsanyi, as a game with incomplete in-
formation. Notice that almost all the
non-abstract literature uses the distinction
between types to reflect differences in knowl-
edge about payoff-relevant items. The
current example is exceptional in that it
demonstrates a family of natural game-
theoretic scenarios in which the main differ-
ence between the types is in their knowledge
about other players’ knowledge.

E. A Formal Presentation of the Type
Spaces and the Information Partitions*

Those readers who are familiar with Au-
man (1976), may found it helpful to have a
formal statement of the type spaces and the
information partitions in the electronic mail
game. The type spaces of the two players are
the sets which include (a,0,0) and the triples
(b,t,t") where t>0 and ¢’ is either ¢ or
t —1. Array the set in the following order:

(a,0,0)(5,1,0)(b,1,1)(5,2,1)
(5,2,2)(b,3,2)(b,3,3)....
Player 1’s information partition is:
{(2,0,0)}{(5,1,0), (b,1,1)}
{(b,2,1),(5,2,2)}{(5,3,2),(5,3,3)} ...
and player 2’s information partition is:
{(a,0,0),(6,1,0}{(6,1,1),(b,2,1)}
{(6,2,2),(5,3,2)}{(5,3,3)....
The meet of the two partitions is the trivial

partition which contains only the entire type
space. Thus the event “b” consists of the

2In this section I am closely following a referee’s
suggestion.
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entire type space with the exception of
(a,0,0) and is never common knowledge.
Notice that when £=0, the feasible states
are just (a,0,0) and (b, o0, 0).

F. Topology

Two of the readers of the first version of
this paper, both experts in the literature on
common knowledge, raised objections to the
way I use the term “almost common knowl-
edge.” They based their objection on the fact
that when &— 0 the information partitions
of the players do not converge to the infor-
mation partitions when e¢=0 (see this sec-
tion, Part E). A referee suggested several
topologies in which alternative concepts of
“almost common knowledge” make sense.

Before reacting to this criticism let me
emphasize again that I use the term “almost
common knowledge” not for stating that the
electronic mail game with ¢ close to 0 is
almost the game with é=0. What I am
saying is that the situation with a high 7 is
close to the common knowledge situation.
However, I would like to use this objection
to spell out my opinion on the role that
topology (in common with most other fields
of “fancy mathematics™) should play in eco-
nomic theory. Topology should be used in
one of two ways: (1) as a technical tool for
phrasing a meta-claim about a family of
models, or (2) as a substantial tool to formal-
ize natural intuitions about “closeness.” I
envisage the high 7T; situation as being close
to the common knowledge situation in the
sense of (2). This may be unhelpful from a
technical point of view and a conclusion
from the example is indeed that the Nash
equilibrium is not upper hemicontinuous in
this convergence. However, lack of technical
usefulness is not an argument against the
perception that a situation with high 7] is
close to a situation with common knowledge.
Obviously other definitions of convergence
may be useful not only as technical methods
but also for expressing other intuitions of
closeness.

REFERENCES

Aumann, Robert J., “Agreeing to Disagree,”
Annals of Statistics, 1976, 4, 1236-239.



VOL.79 NO. 3

Binmore, Kenneth and Brandenberger, Adam,
“Common Knowledge and Game Theo-
ry,” Discussion Paper No. TE/88/167,
STICERD, London School of Economics,
1987.

Halpern, Joseph Y., “Reasoning about Knowl-
edge: An Overview,” in Reasoning about
Knowledge, J. Y. Halpern, ed., Morgan
Kaufmann, 1986, 1-18.

Harsanyi, J. C., “Games with Incomplete In-
formation Played by Bayesean Players,”
Parts I, II, III, Management Science, 1967,
14, 159-82, 320-34, 486-502.

Kreps, D., Milgrom, P., Roberts, J. and Wilson,

RUBINSTEIN: ELECTRONIC MAIL GAME 391

R., “Rational Cooperation in the Finitely
Repeated Prisoner’s Dilemma,” Journal of
Economic Theory, August 1982, 27,
245-52.

Lewis, David, Convention, A Philosophical
Study, Cambridge: Harvard University
Press, 1969.

Mertens, Jean-Francois and Zamir, Samuel,
“Foundation of Bayesian Analysis for
Games with Incomplete Information,” In-
ternational Journal of Game Theory, 1985,
14,1-29.

Schiffer, Stephen R., Meaning, Oxford: Ox-
ford University Press, 1972.





