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The paper presents an approach to selecting among the many subgame-perfect equilibria
that exist in a standard concession game with complete information. We extend the description
of a game to include a specific ‘irrational’ (mixed) strategy for each player. Depending on
the irrational strategies chosen, we demonstrate that this approach may select a unique
equilibrium in which the weaker player concedes immediately. A player is weaker either if
he is more impatient or if his irrational strategy is to wait in any period with the higher
probability.

I. THE WAR OF ATTRITION

The following game is a variant of the ‘War of Attrition’ which is now a
standard paradigm in economic theory. Some examples of its applications
include the study of price wars (e.g. Fudenberg and Tirole, 1986, Ghemawat
and Nalebuff, 1985; Kreps and Wilson, 1982), bargaining (Ordover and
Rubinstein, 1986; Osborne, 1985), the supply of public goods (Bliss and
Nalebuff, 1984), and oil exploration (Wilson, 1982). (See Hendricks and
Wilson, 1985, for a survey of the literature.) Two players, 1 and 2, are involved
in a dispute. Time is discrete and the players alternately have the option to
concede. If player 1 concedes in period ¢, the outcome is (A, ¢). If player 2
concedes in period ¢, the outcome is (B, t). If neither ever concedes, the
outcome is (C, o).

The game form is illustrated in Figure 1. To enforce the alternation of
moves, we restrict player 1 to move only in the even periods and player 2 to
move only in the odd periods. A strategy for player 1 then is a sequence
ay={a,(t)}i=024.., Wwhere {1—a,(#)}€[0, 1] is the probability that player 1
concedes in period ¢ conditional on neither player conceding before period .
Similarly, a strategy for player 2 is a sequence a,={a,()},=135,.-

We suppose that the preferences of the players can be represented by Van
Neumann-Morgenstern utilities, v; satisfying v,(C, 00) = v,(C, 00) =0 and, for
t<oo, v;(x, t) =u;(x)8;, where u;(A) = u,(B) = L (the low payoff) is the return
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FIGURE 1. The Extensive Game
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to conceding and u,(B) = u,(A) = H (the high payoff) is a player’s return if
the other player concedes. We assume that 0 < §; <1and H§;> L>0fori=1, 2.
Thus, if a player is sure his opponent will concede in the next period, it is
optimal for him not to concede, but if he is to be the first to concede, he
prefers to do it sooner rather than later.

There are two asymmetries in the model. One is due to the order of the
moves in the game. For our purposes, this asymmetry is not important since
our results below do not depend on the order in which the players move.' The
second potential asymmetry is in the time preferences of the players (8, may
be different than §,.) It is on this asymmetry that we will focus our attention.

Regardless of the relative size of the discount factors, there is an infinity
of subgame-perfect equilibrium outcomes. One of these outcomes is for player
1 to concede immediately. Another is for player 1 to wait and for player 2 to
concede immediately. Our own intuition, however, suggests that the weaker
player, the one with the lower discount factor, should concede immediately.
One of the aims of the paper is to develop a criterion for selecting this particular
equilibrium outcome.

I. WHAT Is MISSING IN THE MODEL

We take the position that a game of complete information can generally be
thought of as an approximation to a multi-person decision problem in which
each player is reasonably certain about the objectives of the other players but
does entertain the possibility that one or more of the other players will act
irrationally. Consequently, our criterion for selecting an equilibrium will
require that it be close to an equilibrium of the corresponding perturbed game
obtained by introducing some irrational player with arbitrary small probability.
There are, of course, many ways to model an ‘irrational’ player, and, as
Fudenberg and Maskin (1986) have shown in the context of a repeated game,
the choice of perturbations may dramatically affect the equilibrium outcome.
In this paper we are using perturbations to capture biases in the uncertainty
players have about the ‘toughness’ of their opponents. For the purposes of
"this paper, therefore, we will identify an irrational player with a particular
mixed strategy which we believe captures these biases in beliefs.

Formally, let I' be an n player game in extensive form and o
(o¥,..., k) beany (behaviour) strategy combination for I'. For any ¢ € (0, 1),
let (T, o*, ) be a game with the same extensive form and payoffs as I' with
the property that any strategy combination o for (I, ¥, €) is equivalent to
the strategy combination g0+ (1—¢)o* for I'> Then, o is a (sequential)
o*-equilibrium for T if it is the limit of a sequence of strategy combinations
{o*}, each of which is a (sequential) equilibrium for (', o*, €*) for some
sequence {e*} such that £*-0.> We interpret a o*-equilibrium to be the
outcome of a game I' when all of the participants believe that there is some
(small) chance that the strategy of player i will deviate from his rational play
and adopt strategy o¥.

One may view this approach as the combination of two ideas that are
already well established in the literature. In a series of papers, Kreps, Milgrom,
Roberts, and Wilson (1982), Kreps and Wilson (1982), and Milgrom and
Roberts (1982) have included the players’ doubts explicitly in the model. In
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determining the equilibrium outcomes in the Chain Store Paradox and the
Prisoner’s Dilemma, they suppose that the players assign a small probability
that their opponents use a certain strategy specified exogenously by the model-
ler (the ‘tough’ Chain Store Strategy and the ‘tit-for-tat’, accordingly). Under
such an assumption, they are able to obtain sequential equilibria which are
not equilibria of the original game.

Our objective differs from theirs in two ways. First, we want to determine
how the equilibrium changes as we vary the fixed strategy o* and/or the
payoffs of the rational players. Second, we are interested in selecting an
equilibrium from the set of equilibria of the original game of complete informa-
tion rather than trying to justify a new equilibrium outcome. Thus, although
we modify the game by adding an irrational player, we are only interested in
the equilibria as the probability of the irrational player goes to zero. This leads
us to the second idea to which our idea is related.

Selten (1975), Myerson (1978), Kohlberg and Mertens (1986), and others
have suggested equilibrium concepts based on the limit of the equilibria of
sequences of perturbed games. The most widely used of these ideas is Selten’s
concept of a ‘trembling hand’ perfect equilibrium. An equilibrium is trembling-
hand-perfect if it is the limit of the equilibria of some sequence of games in
which the behaviour strategy at each information set is perturbed with increas-
ingly small probability. Thus, not only is the specific perturbation unspecified
in advance, but any errors across information sets are uncorrelated. Evidently,
mistakes are to be interpreted as errors of execution rather than errors of
rationality. -~

The primary motivation behind Selten’s approach was to extend the intu-
ition of subgame perfection to games with incomplete information. The motiva-
tion behind our approach is to test an equilibrium against a pre-specified
possibility of irrational behaviour. Thus, the ideas behind the o*-equilibrium
differs from the trembling-hand-perfect equilibrium in two ways. First, as in
the work on the Chain Store Paradox cited above, our perturbations are in
mixed (or behaviour) strategies rather than local strategies (or mixed strategies
in the agent-normal form). This leads to the possibility that mistakes are
correlated across information sets.* Second, it implicitly incorporates a precise
form of irrational behaviour (and hence specific perturbations of the strategies)
in the concept of the equilibrium. As we emphasized above, our main objective
is to study how changes in the form of irrational behaviour affect the outcome
of the game.

Finally, we should note that the techniques used to establish our results
are also well established in the literature. A number of authors (e.g. Kreps
and Wilson, 1982; Fudenberg and Tirole, 1986; and Wilson, 1982) have
demonstrated that introducing certain kinds of irrational players in the War
of Attrition will lead to unique (or locally unique) equilibria. The form of the
irrationality, however, is generally quite simple. The irrational player never
concedes. That is, he represents the most extreme version of a ‘tough’ player.
Because we wish to parameterize the ‘toughness’ of a player and examine its
implications for the equilibrium of the game, however, we are forced to require
even the irrational players to mix in each period. As a consequence, the details
of the analysis become considerably more complicated.

We turn now to the concession game described in Section I.
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III. THE MAIN RESULT

The theme of our results is illustrated in the following example. Suppose that
each player is irrational with probability ¢ > 0 where for player 2 ‘irrationality’
means never to concede and for player 1 it means to concede always. It is
easy to check that, regardless of the values of 8, and §,, the only equilibrium
outcome is for player 1 to concede immediately. This observation fits nicely
our intuition that the asymmetry in the content of ‘out-of-rationality’ behaviour
is critical in determining the outcome of the game. Player 2 can build up a
reputation of playing tough, whereas player 1 does not have the tools to do
that. In this section, we parameterize the ability of players to build up their
reputations and investigate its implications for the equilibrium of the game.’

In general, there are irrational opponents against whom it is optimal to
concede immediately but to wait if the game reaches some later stage without
a concession. Consequently, if the influence of an irrational player is to be
independent of time, we must impose some stationarity in the strategies of the
irrational opponents. We will therefore restrict attention to irrational players
whose strategies are of the form (¥, v, y,...). That is, the irrational player
plans to concede with the same probability (1 —vy), conditional upon reaching
any period in which he is permitted to move. In what follows, let i refer to
an arbitrary player and j to the other player, and assume that any integer ¢ is
odd or even as the definitions require.

To state our main result, we define p; to be the solution of

Suppose that, conditional on reaching period ¢, player j concedes with probabil-
ity (1-p;). Then player i is indifferent between conceding in period ¢ —1 and
waiting until period ¢+ 1 to concede. If, upon reaching period ¢, player j plans
to concede with a probability smaller than (1—p;), then player i prefers to
concede in period ¢ —1 rather in period ¢+ 1. If, upon reaching any period ¢,
player j plans to concede with a probability greater than (1 - p;), then player
i prefers to wait until period f+1 rather than concede in period ¢ —1. Since
we suppose that §;H > L, it follows that 0 < p; <1. Furthermore, §; > §; implies
P = Pi

Let I'(8,, 8,) be the concession game defined by the discount factors &,
and 8., and let (y,, v,) € [0, 1]* represent a pair of stationary strategies. Then,
given the definition of p;, we may state our main result as follows.

Theorem 1. Suppose y,>p, and vy,/p.> v,/p,. Then the unique sequential
(v1, ¥2)-equilibrium outcome for I'(§,, 8,) is for player 1 to move immediately
with probability 1 (i.e., @,(0) =0).

Recall that (1~ 1v;) is the probability that, upon reaching any period, the
irrational player i concedes, and (1—p;) is the probability of moving in any
period that induces indifference for player j between immediate concession
and waiting to concede at his next turn. If v, is greater than p,, then, faced
with his irrational opponent, player 1 would concede immediately. If in
addition the ratio vy,/p, is greater than vy,/p,, then Theorem 1 implies that
player 1 concedes immediately in any sequential (y,/y,)-equilibrium. In par-
ticular, if the players have identical time preferences (8, = 8, ), the player with
the better facility for building a reputation for toughness (the highest y;) will
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win, while if the players have the same facilities for establishing a reputation
(y1=7), then the more impatient player concedes immediately.

Theorem 1 is a statement about the equilibrium outcomes. For almost all
parameter values, the sequential (v, v, )-equilibrium is itself unique.

Theorem 2. (a) Suppose y,/p.>vy:/p,>1. Then a,=(0, p,, p;, p1,.-.) and
a>=(p,, P2, P2, - - - ) is the unique sequential (y,, y,)-equilibrium for I'(8,, §,).

(b) Suppose y,/p.>1>v,/p,.Then @;=(0,0,0,...)and a,=(1,1,1,...)
is the unique sequential (vy,, v, )-equilibrium for I'(§,, §,).

Given the conditions of Theorem 1, Theorem 2 reveals a kind of second-
order benefit to player 1 if his irrational counterpart (who plays vy,) is
sufficiently tough. When v,/p, <1, player 2 always waits and player 1 always
concedes, regardless of the history of the game. However, when v,/p;>1,
each player i concedes with probability (1 — p; ) upon reaching any later period.
Thus, if player 1 makes a ‘mistake’ in the first period and waits, there is positive
probability that player 2 will eventually concede.

Theorem 1 depends upon the satisfaction of two conditions. First, at least
one of the players must have the ability to build a reputation for toughness.
Second, one of the players must haye an advantage over his opponent in
building his reputation. If either of these conditions is violated, we obtain a
different set of sequential (y,, y,)-equilibrium outcomes. If y,/p, = v,/p.> 1,
then both players have an equal facility for building a reputation for toughness.
In this case, player 1 concedes immediately with a probability between 1—p,
and 1- vy,. Thereafter, the probability with which player 1 concedes depends
only on the impatience of the other player.® On the other hand, if neither
player is sufficiently tough to induce a rational opponent to concede, then it
is a sequential (y,, y,)-equilibrium outcome for either player to concede
immediately.’

If we reverse the order of y,/p, and v,/p,, the statement of the theorems
must be modified, but the results are essentially the same.

IV. PROOFsS

In the section, we provide a complete proof of Theorem 2(a). The proof of
Theorem 2(b) (and Theorem 1, for the case where y, =p,) is provided in an
earlier version of the paper.

Suppose player 1 is playing strategy «,. We will use the following notation.
For any odd period ¢, let u,(¢) be the probability player 2 assigns to the
possibility that player 1 is an irrational player, conditional on the game reaching
period t. Let 1—,(t+1) be the probability player 2 assigns to the possibility
that player 1 plans to concede in period ¢+ 1 conditional on reaching period
t+1. Then, letting u,(—1) = &, we may define, for any odd period ¢t >0,

ma(t+2) =y pi(t)/Bi(t+1)
and
Bi(t+1)={1—p,()}a;(t+ 1)+ u, ().

We begin by characterizing the equilibria of the perturbed game
{I'(8,, 8,), (y1, ¥2), €}. The argument is roughly as follows. We first establish
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that, as long as the rational player i has not yet moved with probability 1, he
must adjust his strategy so that (after the initial period) his opponent is
indifferent between conceding immediately and waiting another period. Since
v; > p;, this implies that, in any period ¢, the rational player j concedes with
a higher probability than his irrational counterpart. Consequently, we eventu-
ally reach a period #; by which he has conceded with probability 1. At this
point, faced with a relatively ‘tough’ irrational opponent, it is optimal for the
rational player j to concede immediately if he has not already done so. This
argument leads to the conclusions of Lemma 2 below.

In Lemmas 1-4, assume vy,/p,> v,/p,>1 and take B;(t), u;(t), etc., to be
equilibrium values for player i in the game {I'(8,, 8,), (71, 72), €}-

Lemma 1. Suppose ¢t>0. Then, for i=1,2,
(a) Bi(t+1)=p;, and

(b) Bi(t)>p; implies «;(t) =0 (and hence wu;(t+1)=1).

Proof. We will establish part (b) first. Suppose B;(t) > p; for some t> 0.
Then, if it is optimal for the rational player j to wait in period ¢ —1, it cannot
be optimal for him to move in period ¢+ 1. Therefore, the rational player j
either moves with certainty upon reaching period ¢t —1 or waits with certainty
upon reaching period ¢+ 1. In the first instance, player j is irrational with
probability 1 in period t+1 so that B;(t+1)=1v,. In the second instance,
Bi(t+1)={1—p;()}+ p;(t)y;=v,. In either instance, B;(t+1)= ;> p,.

Proceeding by induction, it follows that B;(t+ k) > p; for all odd k> 0.
Consequently, for every non-negative even k, upon reaching period ¢+ k, the
rational player j strictly prefers conceding immediately to waiting and conced-
ing in period ¢+ k+2. But since the game is continuous at infinity,® it follows
that, upon reaching period ¢, the rational player j strictly prefers conceding
in period ¢ in waiting until any later period (including o). Therefore, «;(t) =0
and hence u;(t+1)=1.

To establish part (a), suppose B;(¢+1)<p; for some t>0. Then, upon
reaching period ¢, the rational player j will choose to wait; i.e., a;(f)=1.
Therefore  B;(t)={1—u;(t—1)}+u;(t—1)y;=v,>p;, contradicting part
(b). Q.E.D.

Fori=1, 2, define f;=sup {t:u;(¢) <1} to be the last period in which player
Jj moves for which there is still a positive probability that player i is rational
(or ©).” Then we may establish

Lemma 2. (a) Bi(t)=p; for 2=t<{,i=1,2; (b) f,<oo for i=1,2; and (¢)
|f,— £y =1.

Proof. Part (a) follows immediately from Lemma 1 and the definition of
f.. To establish (b), suppose that f = co. Then it follows from part (a) that, for
all t>1, B;(t) = p; and hence that w;(¢) = (y:;/p;)w:(t —2). But then, v;/p;>1
implies that u;(t)> 1 for ¢ sufficiently large: a contradiction.

To establish (c), suppose that u;(¢) = 1. Then, for all odd k>0, B;(k+1) =
v;> p;. The lemma then follows from part (a) of Lemma 1. Q.E.D.

The next step is to note that vy,/p,> v,/p, implies that the rate at which
rational player 1 must concede in order to make his opponent indifferent
between conceding and waiting is smaller than for player 2. Consequently, to
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ensure that the rational players first concede with probability 1 in adjacent
periods, player 1 must concede with a relatively high probability at the outset
of the game. Furthermore, the smaller is the initial probability that the players
are irrational, the longer the rational players must wait before conceding with
probability 1, and consequently, the larger is the probability that player 1 must
concede at the outset in order to ensure that both players first concede with
certainty in adjacent periods. Theorem 2(a) is then proved by establishing
that, in the limit, this relationship requires player 1 to concede immediately
with probability 1.

Lemma 3. (a) f,=1{,—1 implies that
12(2)(72/ p>) 2 <1 =y (D(1/ 1) 2 = 12(2)(72/ P2) 7%
(b) ?1 = ;2+1 implies that

m((/p) ™2 <1= a2/ p2) 22 = i (D) (/1) =272

Proof. We establish first that #;, = #;+ 1 implies B;(#;+ 1) = p;. Suppose ;=
f;+1 but B;(f;+1)# p;. Then Lemma 1(a) implies that B;(#;+1)> p;. Con-
sequently, upon reaching period f;, the rational player j strictly prefers conced-
ing immediately to waiting and moving in period f;+2. Therefore, either
a;(f;)=0 or a;(#;+2)=1. In the first case, u;(#;) =1, violating the definition
of 7;, and in the second case, w;(#;+2) <pu;(f;) <1, violating the definition
of f.

Now suppose f,=1%,—1. Then the previous paragraph implies that
Bi(f;+1) = p; and hence that

2(2)(72/P2) = () <1 = (B4 2) = (D (/1) 2.

By assumption, #,>0, and therefore Lemma 1 implies that B,(#,+1)=p,.
Consequently,

1= po( ?2‘*' 2)
= #2(2)(‘)'2/P2)(f2_2)/2{ Y2/ Ba( fz‘*‘ 1)}
= u2(2)(v2/p2) /2,

These two relations establish part (a). A similar argument establishes part
(b). Q.E.D.

Using Lemma 3, we may establish some properties of the sequential
equilibria of {I'(8,, &,), (v1, ¥2), €} as € becomes small.

Lemma 4. For any t>0 and any &,>0, there is a ¢ >0 such that, for all
e<y: (a) Bx(1)=p,, (b) §;>1, and (¢) |a;i(t) —pi| <e,.

Proof. We establish first that 8,(1) = p, for £ > 0 sufficiently small. Suppose
B2(1)<p,. Then w,(2)> wu,(0)y,/p.= €y,/p,. Furthermore, player 1 never
concedes in period 0, and, therefore, is more likely to be rational in period 1
than at the outset of the game. That is, u,(1) <pu,(—1) = &. Then, using both
parts (a) and (b) of Lemma 3, we may show that

e(72/P2) < pa(2) (72/ P2) =22 = (1) (0 / p1) 2 < e(mi/ 1) 72,
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contradicting the assumption that y,/p, = v,/ p,. We conclude that 8,(1) = p,.
This implies in turn that wu,(2)<ey,/p,<1 for e sufficiently small. Part (a)
then follows from Lemma 1(b).

Since B,(1) = p,, Lemma 3 implies that

£(y2/p> )(i2+2)/2 = w2(2)(v2/p2) B2z

Fix t> 1. Then there is an ¢ >0 such that & <y implies ¢ < {,. Part (b) then
follows from Lemma 2(c). Furthermore, it follows from Lemma 2(a) that
Bi(k)=p, for even k,0<k =t Lemma 3 then yields

() = (1) (yi/ py) V72
=u1(1) (/P )(;'—1)/2(171/‘)’1 )(i'_')/z
<(pu/ 1)

Since ;> as £ -0, it follows that u,(t) >0 as £ > 0. Then since 8,(t) = p,,
it follows from the definition of B8,(¢) that ,(t) - p, as € > 0. A similar argument
establishes that, for any odd t>0, a,(t) > p, as ¢ > 0. QE.D.

Proof of Theorem 2(a). For each £>0, it is straightforward to construct a
sequential equilibrium satisfying the conditions of Lemmata 3 and 4. (Alterna-
tively, see Fudenberg and Levine, 1986.)

Using the definitions of u,(1) and B,(0) and both parts of Lemma 3, we
obtain

{evi+(1—€)a(0)}/ vi=B:1(0)/y,= e/ (1) = (pa/ ¥2) 2(2)/ 1 (1)
= (yp2/ ‘)’2171)(;2+2)/2~

Then, since v,/p,> v,/p, and f,-> as £ >0 (by Lemma 4(b)), it follows that
a,(0)>0 as € >0. Lemma 4 also implies that «;(¢) > p; for t>0,i=1,2. By
definition, this strategy pair forms a sequential (y,, v, )-equilibrium. Q.E.D.

The precise proof of part (b) of Theorem 2 is a bit more cumbersome.
Roughly, the idea is to show that, even in the perturbed game, the rational
player 1 must move with probability 1 at the outset of the game. Suppose not.
Then, since the irrational player 1 concedes with a relatively high probability
in any period, the rational player 1 must concede with a lower probability in
order to make the rational player 2 indifferent to conceding and waiting. This
implies that the rational player 1 never concedes with probability 1. However,
to make the rational player 1 indifferent between moving and waiting in each
period, an argument similar to that given above implies that the rational player
2 must concede with probability 1 in some period. At this point, faced with
the relatively tough irrational player 2, it is optimal for the rational player 1
also to concede immediately. This contradiction establishes the result. A
complete proof is given in the unpublished version of this paper.

V. CoONCLUDING REMARKS

In this paper, we have illustrated an approach that, in some cases, allow us
to select a specific outcome in games with multiple equilibria. Essentially, we
are suggesting that the specification of the equilibrium be extended to reflect
the details about the kind of response a player expects to face if his opponent



1989] REPUTATION AND PATIENCE 23

deviates from rational behaviour. For the particular concession game analysed
here, we have parameterized how the differences in the tendency of players
to play excessively tough (or weak) affects the interaction of rational players.
In an earlier version of the paper, we provided a more complete analysis of
how the equilibria depend on the characteristics of the irrational opponent.
There we demonstrated that, when the expected irrational behaviour of both
players is excessively weak, this approach yields no additional restrictions on
the equilibrium outcomes. Only when at least one irrational opponent is
sufficiently ‘tough’ does our concept leads to a unique equilibrium outcome.

In closing, we should emphasize again that our motivation is very different
from writers trying to develop a criterion for rational responses to unanticipated
events. Indeed, most of the equilibria we eliminate imply that no event can
be completely unanticipated. Rather, our objective is to investigate how
different presumptions about the irrational tendencies of an opponent can
affect rational play. Thus, we are not interested here in refining the equilibrium
concept. Nor are we interested in defining a single set of criteria for selecting
an equilibria, since we believe that the determinants of equilibrium selection
lie outside the formal definition of an extensive game. Although our approach
may seem less satisfying than using more rigid criteria, we believe it is preferable
to make explicit the presumptions we have in certain situations rather than
obscure them behind artificial criteria, the motivation of which is somewhat
vague.
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NOTES

1. This asymmetry could be eliminated by supposing that the players move simultaneously in
each period. Our general results remain unchanged, but the analysis of the equilibrium becomes
more complicated.

2. If I1,(o) is the payoff to player i from strategy combination o for the game I, then [1¥(o) =
I1,{ec+(1—¢e)o*} is the payoff to player i in the game (', o*, €) from strategy combination
o_.

3. We use the product topology induced by the Euclidean norm on the space of local strategies
(see Fudenberg and Levine, 1983). Given any strategy combination o*, the existence of a
(sequential) o*-equilibrium for games with a finite strategy space follows from standard
arguments. The results of Fudenberg and Levine can also be used to guarantee the existence
of a (sequential) o*-equilibrium for an important class of infinite-horizon games, including
the one we study here. The equilibrium concept could obviously be used with other refinements
of the equilibrium concept besides sequential equilibrium.

4. See Binmore (1987) for a discussion about the relation between correlated trembles and

irrational behaviour.

. For a discussion of this use of the concept of reputation, see Wilson (1985).

. This result is established in the unpublished version of the paper.

. It is enough to verify that (i) «;=(0,0,0,...) and @, =(1,1,1,...) and (ii) ¢, =(1,1,1,...)
and a,=(0,0,0,...) are both sequential (vy,, y,)-equilibria when vy,/p,, v,/p; = 1. In fact, we
can show that, under this assumption, the set of sequential (y,, y,)-equilibria for
{T'(8,, 8,), (71, v2)} is equal to the set of subgame perfect equilibria for I'(§,, §,).

. See Fudenberg and Levine (1983) for a precise definition.

. If £, <o, then w;(f;+2)=1.

NN
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