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I. INTRODUCTION

The essence of the situation to be studied here is this: two
players are involved in a conflict that can be resolved in only two
possible ways. Each player favors a different outcome. During the
bargaining phase, which lasts until some finite time 7, each player
has the option to concede. If none concedes, the game ends at time
Toin a way that is known to one of the players from the beginning
of the game. The other player is uncertain about the outcome.
Time is valuable, but each player prefers to receive his favored
outcome at 7y than to concede immediately.

Thus, the game analyzed here is characterized by the asym-
metric information about the outcome at the end point, i.e., at
time 1,. Whereas one player is perfectly informed about the pos-
sible outcome; the other is compelled to deduce the information
from the actions of his informed opponent. The latter, in turn,
can try to exploit his initial advantage by manipulating the flow
of information. For example, the informed player may adopt a
tough stance in order to create the impression that he is not afraid
of forcing the resolution of the conflict at 7o and thereby builds
his reputation.! At the same time, the uninformed player by not
conceding can test the opponent’s resolve.

This brief description suggests that the problem analyzed
here is a variant of the game of attrition.2 However, our problem
differs from the standard game of attrition in two respects. First,
we formulate the game in discrete time, which has important
analytic consequences. These are fully developed in Hendricks
and Wilson [1985]. Second, and more important perhaps, we study
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supported in part by a grant from the National Science Foundation. The April
1983 version of this paper was entitled “On Bargaining, Settling, and Litigating:
A Problem in Multistage Games with Imperfect Information.” We would like to
thank Chuck Wilson for very useful comments on the earlier drafts of this paper.

1. Reputation-building is extensively discussed in Wilson [1985].

2. Wars of attrition are studied, for example, in Riley [1980], Bliss and
Nalebuff [1984], Osborne [1985], Weiss and Wilson [1984], and Hendricks and
Wilson [1985]. In particular, Hendricks and Wilson provide an extensive discus-
sion of equilibria in the war of attrition in discrete time. They do not, however,
allow for private asymmetric information. Bliss and Nalebuff [1984] allow for
asymmetric information about the time preferences in continuous time models.
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the game of attrition in a setting with asymmetric information.
However, unlike Bliss and Nalebuff [1984], for example, we do
not posit that private information pertains to the costs of fighting
the game. These are assumed to be common knowledge. Here, the
informational asymmetries pertain to the costs of failing to make
the agreement before the prespecified time. This type of asym-
metric information is, we think, of independent interest. Indeed,
asymmetric information about the disagreement outcome is an
essential feature of many realistic game situations, two of which
are instanced below. Others can also be readily supplied.

The analytic approach adopted here is closely related to that
of Kreps and Wilson [1982b], who also consider a game with one-
sided imperfect information. The key common feature is the as-
sumption that one of the informed players has a dominant strat-
egy for the duration of the game. As a consequence, all nodes of
a game are reached with a positive probability. Following these
two authors, we also utilize sequential Bayesian equilibrium as
the appropriate solution concept. '

Besides asymmetric information, the key features of the sit-
uation are that full information will be revealed at the end of the
bargaining horizon and that compromises are not possible. The
absence of compromise permits a simple characterization of equi-
libria and facilitates comparative statics analysis of optimal strat-
egies. It also bares clear the information-transmission and repu-
tation-building features of the concession game.

The following are two possible interpretations of the model.

A. Two firms, an incumbent and an entrant, compete for
control of a natural monopoly market. The entrant’s product is
of unknown quality. Its quality will be revealed at time To. If it
is of high quality, the incumbent will have to exit. Each firm
would rather exit sooner than later, if it is to exit at all. On the
other hand, each firm prefers to be the sole supplier. In this model
exit is equivalent to concession, and imperfect information per-
tains to product quality.

B. In some legal conflicts the dispute can be resolved in only
two ways (monetary transfers being difficult or impossible): for
example, an accused can be found guilty or not; a parent can get
child custody or not, etc.? In some of these cases the parties do
not consider a compromise in the pre-trial stage. Alternatively

3. Static models of pre-trial bargaining are studied in Landes [1981], Gould
[1973], Shavell [1982], and P’ng [1983].
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they take a verdict as being exogenously given. It is also plausible
that one party has better information about the likely verdict, in
case a judge has to make a decision.

The rest of the paper is as follows. In the next section we
introduce the model. Section III analyzes the sequential equilib-
rium of the model. There we show that equilibrium strategies
entail the following: at the beginning of the game the informed
player concedes with some “large” probability, and then the play-
ers concede with probabilities that make their opponents indif-
ferent between conceding at their next decision point or proceed-
ing for one more period. Section IV discusses the efficiency of the
equilibrium and presents the comparative statics results. We show,
for example, that as the bargaining horizon is lengthened, various
efficiency measures decline.

II. THE MODEL

Two players, 1 and 2, are involved in a dispute that can be
resolved in only two possible ways, denoted by a and . No com-
promise is possible. The interests of the players are such that 1’s
preferred resolution is a and 2’s is b. Time is discrete: £ = 0,1,2, .. .,
T > 2. We assume that 7T is even. (As will become clear soon, the
case when T is odd is almost identical to the one with T' — 1
periods.) In the first T periods, each player in turn, starting with
player 1, may concede. If either player concedes, the game stops.
If 1 concedes in period ¢ (¢ even), the outcome of the game is (b,);
if 2 concedes at ¢ (¢ odd), the outcome is (a,t). In the event that
neither concedes, the conflict is resolved in the last period in a
way that depends on the state of nature w. If « = w, player 1 is
“weak,” denoted by 1,,, and the resolution will be b. If » = s, the
player is “strong,” denoted by 1, and the resolution will be a.
The information structure is such that 1 knows the value of .
Player 2 does not know the state of nature, but it is common
knowledge that 1 does. 2’s prior estimate that v = w is equal to
Po, Where 0 < po < 1.

Players 1 and 2 have preferences =; and =,, respectively,
over the set of possible lotteries of outcomes of the game. (We use
the notation p0; + (1 — p)0, for the lottery, “get 0, with the prob-
ability p and get 0, otherwise.” We assume that players have von
Neumann-Morgenstern utility functions of the form u(c,t) =
u;(0)d%, = 1,2, and 0 < §; < 1. (This representation of preferences
is quite general; see Fishburn and Rubinstein [1982].) Although
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it is not necessary, we assume that preferences are symmetric,
namely, :

ui(@) = uy(b) = M >0, u(b) = uy(a) = m >0,
M>m, 81=82=6_r.

We assume that preferences are such that each player would
rather win at time T than concede immediately. Thus, 1, never
concedes; 1,,, who cannot prevail at time 7, chooses his actions
based on his belief that 2 will concede. This assumption also
implies that player 2 will not concede if he is certain that 1 will;
otherwise, 2’s behavior depends, as will be shown below, on his
belief that » = w and on the actual behavior of his opponent.

A strategy for player 1,, is a sequence {x%},_o5.4 . .. 1-2, Where
0 = x* = 1 is the probability of conceding at time ¢. Player 1, is a
dummy player, since he has a dominant strategy never to concede.
A strategy for player 2 is a sequence {y%},_ 1.35,...,7-1, Where
0 =y’ = 1 is the probability of conceding at time z.

Player 2 faces uncertainty as to the state of nature. A belief
system is a sequence of numbers between 0 and 1,

{p7=1t, where p’ is interpreted as 2’s belief at the beginning
of the tth period, ¢ odd, that » = w.

We use a version of the Sequential Equilibrium (see Kreps
and Wilson [1982a]) as our solution concept. Consider a three-
tuple (x,y,p), where x,y are strategies for 1,, and 2, respectively,
and p is 2’s belief system. Such a three-tuple is a sequential
equilibrium if the belief system satisfies the Bayesian formula
which is always applicable because p’ < p, < 1; and at any de-
cision node the residual part of each of the strategies x and yis
the best response against the residual parts of the other player’s
strategy.

III. THE MAIN PROPOSITION

For the statement of the proposition we need additional no-
tation. Let o be the probability that makes player 1 indifferent
between giving up at ¢t = 0,2,..., T—2, and accepting the fol-
lowing lottery: get @ with probability « in period ¢ + 1, and get
b with probability (1 — «) in period ¢ + 2. That is,

(bt) ~1alat + 1) + (1 — o) (bt + 2).

Stationarity of preferences implies that « is invariant with
time. o« also satisfies
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(at) ~2a(bt + 1)+ (1 -a)(at+2),¢t=13,...,T-3.

Since bargaining effectively ends in period T, and player 2 moves
last, let us define a to satisfy

(@, — 1) ~,a(d,T) + 1 — a)a,T).
Finally, let {pi}7}, t odd, be a sequence such that
pt=1-(1-o0 - D2

We now turn to the statement of the main result. Its proof
is in the Appendix.

ProPOSITION 1. There exists a sequential equilibrium of the game.
Any sequential equilibrium (x,y,p) satisfies the following con-
ditions:

(1) if po < pi, then x° = 0, and y* = 1;
(ii) if po > pi, then x° = (po — pH/po(1 — pi),
and for all ¢ > 1 (¢ odd), p* = pi, x**1p* = @, and y* = a.

Discussion. Condition (i) states that if 2 is initially pessi-
mistic, meaning that po <pt =1 — (1 — @)1 — )7~ 272, then he
gives up at the first opportunity, which is at ¢ = 1. Anticipating
that, 1,, sets x° = 0 which does not allow 2 to revise his initial
estimate.

In the event that 2 is optimistic, po > p?, then at his first
opportunity 1, concedes with probability x° which reduces 2’s
initial estimate as to who his opponent is from p, to some value
p', which is precisely equal to pi.

The sequence x* is chosen to satisfy pa’*! + (1 — p*) - 0 = a.
Thus, player 2 is made indifferent between conceding or not at
time ¢. Similarly, the choice of ¥* makes player 1 indifferent be-
tween his two options at every decision node. The initial “jump”
at ¢t = 0 makes pf~! equal to @ and thus makes 2 indifferent
between conceding and moving into the stage in which asym-
metric information is resolved.

In the model described in Section II, the selection of points
at which concessions can actually occur is quite arbitrary. It is
useful to analyze a case in which the elapsed (real) time between
the moves becomes arbitrarily small.

Let 7 be a continuous time variable—0 = 7 < . Let 1 be the
length of the game horizon. That is, after 1, has lapsed, all the
relevant information will be revealed, and the game ends. The
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players have von Neumann-Morgenstern utility functions of the
form u,(c,1) = u(c)d" defined on the set (a,b) X R,.

Let us divide the time interval [0,7,] into T equal periods
with the length A = 1,/T. At the beginning of each period, one of
the players has the opportunity to concede. Each player’s time
preferences over the set {a,b} x {0,1,..., T} are induced by
u(e,t) = u;(c)d*, te[0,T]. Then for every T we have the game
whose outcome has been characterized in Proposition 1.

Our task here is to characterize the outcomes of the game as
T— = (i.e., as A — 0); that is, as the time between two concession
points shrinks to zero.

Notice first that a, @, all depend on T

m(l — §24)

e T ——
_ A
SA) = m1 — §)

Md* — md~

The threshold probability p! is given by pP=1-01-9
(1 — )T=22, It satisfies

;im pr = 1-30Momo = 1 — om0 \'= (M — m)/2mr,
as can be demonstrated by applying 1’'Hopital rule to the expres-
sion for pi.

Given that 1 does not concede immediately, the probability
that one of the players will concede at Ais concession point is just
a(A). Consider now the quantity A/a(A) which is the expected time
of the first concession. As T — =, this ratio tends to

lim__u_)\
Tow o) 2mr 7

which does not depend on A.

For a small A, and for any 7, the probability that no concession
occurs before time 7, provided that player 2 has not given up
immediately can be approximated by e~“™. Therefore, provided
that 1 does not concede immediately, in the limit as T — =, the
distribution of concession times tends to exponential distribution
[Feller, 1966, vol. II]; namely, prob {a player concedes before time
7} =1 — e~™, where \! is the “hazard rate.”

The limit distribution of the different outcomes of the game
is summarized in '
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PROPOSITION 2. For 1, satisfying Me "™ > m and p, > limp,..
pt (T), the limit outcomes of the sequential equilibrium of
the game when T~ are (i) Player 1 concedes at time 0 with
probability,

po— 1 + e 02
e‘ro/2)\ ’

where A = (M — m)/2mr. (ii) Conditional on player 1 not
conceding immediately, the distribution of concessions is ex-
ponential with hazard rate 1/\; (iii)The probability that no
player concedes before 7o is (1 — pg)e ™ "0,

IV. COMPARATIVE STATICS RESULTS

The formula presented in Proposition 2 makes it easy to cal-
culate several measures of efficiency properties of the equilibrium.

A. The probability that player 2 concedes to 1,,. This is given
by 1/2 po (1 — e~ "02)(1 — pgle™’* if p, > pi(ty) and is equal to
Po if po < pt. Thus, lengthening the game horizon 7, increases the
probability of the inefficient outcome of the game. For example,
it increases the probability that an incumbent purveying a low
quality good will prevail over the high quality incumbent. On the
other hand, an increase in \, which implies a fall in the hazard
rate, decreases the probability of an inefficient outcome.

B. The expected utilities of the players. These are given in
Table I.

From Table I we note that a lengthening of the bargaining
horizon lowers the expected utilities of strong and uninformed
players. A fall in the hazard rate (an increase in \) benefits the
uninformed player but has an ambiguous effect on the expected
utility of the strong informed player.

TABLE I
Player Utilities when Utilities when
P> po pr <po
1, M M -Eye™) + Me "0 (1 — e ")
1, M m
2 m pox®M + (1 = pox®)m

E denotes the expectation operator, and k is distributed exponentially with the hazard rate 1/2\.
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APPENDIX: PROOF OF PROPOSITION 1

We shall prove the Theorem in a series of steps. Notice the
similarity of the proof with the line of reasoning in Kreps and
Wilson [1982b].

Let (x,y,p) be a sequential equilibrium. Then,

Step 1. If y* = 1, then "' = 0, and y*2 = 1.

Indeed, since (a,t) =; (b,t — 1), 1,, will not concede at ¢t — 1
if he knows for sure that 2 will concede in the next ?eriod. There-
fore, if y* = 1, then x** = 0. But if x** = 0, then p’ = p*2. Since
2isnot more optimistic at ¢ — 2 than he is at ¢ and since (a,t— 2)=,
(a,t), then it must be that y*2 = 1. This means that if it is optimal
for 2 to concede with probability 1 in some period ¢ > 1, then it

-is optimal for him to concede immediately, i.e., at ¢ = 1.

Step 2. If y* = 0, then x**! = 0, and y**2 = 0.

Assume that x**! > 0. This implies that along the equilib-
rium path continuing beyond period ¢ + 1 cannot yield 1,, a better
outcome than (4,6 + 1). This is because if it would, then 1,, should
set x'+1 = 0. And, 1,, can assure himself (b,f + 1) by conceding
at ¢t + 1. Now, since (b,t — 1) =, (b,t + 1) and since y, = 0, 1,,
should have given up in period ¢t — 1;i.e.,x*! = 1. Butifx*! = 1
and if 2 still has to make a move to time ¢, this means that he is
playing against 1, (p* = 0). Hence 2’s optimal strategy is to set
¥* = 1, which contradicts our assumption that y* = 0.

Similarly, if y**2 > 0, then since (a,?) }; (a,t + 2) and x**! = 0,
2’s optimal strategy is to set y* = 1, again contradicting the as-
sumption that y* = 0.

Step 3. y* + 0.

By Step 2, if y%o = 0, then for all ¢ > ¢, x* = 0, and y* = 0.
However, since (b,t, + 1) =, (b,T), it would be better for 1,, to
concede at £, + 1 (x0*! = 1), which is a contradiction. Conse-
quently, we have shown that it is never optimal for 2 to be
intransigent.

Step 4. If y'0 < 1, then for all £, = t < T (¢ odd)

px'*! = o, and pT7! = Q.

If y% < 1, then steps 1 and 3 imply that 0 < y* < 1 for all
¢t = to. Therefore, p™ = @. This is because at T' — 1 player 2 is
indifferent between conceding and not conceding.

Since the continuation of the game after period ¢ is preference-
equivalent for 2 to getting (a,t), it must be that fort, = t < T — 2,

(a,t) ~o px'*1 (bt + 1) + (1 — pix**Y)(a,t + 2).

Given that preferences are stationary, we can note that this
implies px’*! = q.

A similar argument establishes that y* = o forall ¢, ¢ = ¢, + 2.

Step 5. If y* < 1, then p* = pt, t > ¢,.

By Step 4, if yo < 1, p™' = @ = pf~1, and px**! = « for all
t = to. Therefore, using the Bayesian formula in question (2), we
can obtain
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pt—2 (1 _ xt—l) _ pt—2 —a

t = =
1 - pf—2-1t 1 -«

)

which implies that p* = pt.

Step 6. If po < p}, then x° = 0, and y! = 1.

From (1) it follows that p'=p, Since p!>p,, then
p' < pt.From Step 5 this implies that y* = 1. Consequently, x° = 0.

Step 7. If po > pt, thenx® = (py — pH)/(po(1 — pi)), and y* < 1.
First, we show that p™! # p,; that is, that x* # 0 for all £. Assume
that p™! = p,. Then we have that p! > «. Hence 2’s optimal strat-
egy in period T' — 1 is to set y! = 0. This contradicts the result
that y* # 0.

Next we show that y' = 1. Since p”™! # p,, there exists a
minimal ¢, such that x% > 0. That is, there exists some ¢, after
which 1,, concedes with positive probability. From Steps 1 and 3
wehave 0 < yfo+! < 1. Tll')lerefore, by Step 5, plo*+! = plo*+! There-
fore,

xto — (pto—l _ p£0+1)/(pt0—1(1 — pi0+l)).

Note that p?0=! = p,, because ¢, is the first ¢ such that x* > 0.
Hence, po~'x% = (p, — plo*H/(1 — pto*!). Using the fact that
Do > p*, this implies that p’o~x% > o. From which we conclude
that unless x0 = 0, y°o=! = 0. But in Step 3 we have shown that
3y ‘o Therefore, x° > 0, and by Step 1, y* < 1.

Since y' < 1, then by Step 3, 0 < y' < 1. By Step 5, p! = pi.
Hence

%% = (po — pHl(pe(1 — pH)).
Step 7 also completes the proof.
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