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THE SINGLE PROFILE ANALOGUES TO MULTI PROFILE
THEOREMS: MATHEMATICAL LOGIC’S APPROACH*

By ARIEL RUBINSTEIN!

1. INTRODUCTION

In most theorems in Social Choice Theory the multi profile approach is adopted.
The social rule is a function F which is defined for every element in a given set of
preference profiles M. The set M is large enough to give substance to some
inter-profile axioms which require that if two profiles M and N in M meet certain
conditions, then there are certain dependencies between F(M) and F(N). For
example, Arrow’s impossibility theorem uses the unrestricted domain axiom —
that is, the social choice rule is required to assign an order relation on the set of
social alternatives for every preference profile. The inter-profile axiom in that
theorem is the independence of irrelevant alternatives.

Recently another approach has begun to be used — the single profile approach.
The social rule refers to a single profile M. The profile M is “rich’’ enough to
give substance to some intra-profile axioms which require that if some social
alternatives meet certain conditions (relative to M,) then there are certain re-
strictions on the way that the social rule relates to those alternatives.

The most important result in the single profile approach has been proved in
several papers (Kemp and Ng [1977], Parks [1976] and Pollak [1979]). It
states that when the preference profile is sufficiently “rich’’ (well-defined in
Pollak [1979]) any order which satisfies Pareto and Single Profile Neutrality
conditions is identical to the preferences of one of the individuals’ preferences.

Pollak has also given single profile analogues to Sen’s theorem characterizing
the Pareto extension rule, and to May’s theorem characterizing the Majority rule.
These results led Pollak to conjecture that

“It is likely that there are single profile analogues of virtually all the results in
the theory of Social Choice” (p. 86),

and Sen [1977] writes

“As a result of these important contributions it is now clear that the standard
inter profile collective choice results have exact intra profile counterparts....”
(p. 1564).

* Manuscript received February, 1982; revised December, 1983.
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A significant step toward generalizing Parks’ results was made by Roberts
[1980], but he too did not give a theorem proving the existence of single profile
analogues and made do with stating

“...the method of proof demonstrates how prop. 2 and 3 can be applied to con-
vert multi profile into single profile results.”

Is there indeed a single profile analogue to every theorem in Social Choice
Theory? What are the conditions on the single profile for the analogue to hold?
The works previously mentioned do not provide clear answers to these questions.
It seems clear why Parks, Sen and Roberts were satisfied with a descriptive state-
ment, and did not formulate their conjecture rigorously. The conjecture is an
assertion concerning the theorems provable in Social Choice Theory and not an
assertion within the theory itself. A suitable framework for formulating and
proving the conjecture must be a formal theory whose universe of discourse
consists of theorems; Mathematical Logic provides precisely such a framework.

The main purpose of this paper is to investigate the conjecture using basic
concepts from Mathematical Logic. The theorems in section 5 provide a proof
of the conjecture for a class of theorems which is characterized by a specific
linguistic structure. Section 5 also includes an example demonstrating that the
conjecture is not true in general. Before the theorems can be formulated some
preparatory work is necessary. In section 2, the concepts of a profile and a
social welfare function are defined in Mathematical Logic’s terms. In section 3,
the Strong Neutrality axiom is investigated. It is proved that this axiom is
equivalent to a certain linguistic property.

Section 4 formulates and generalizes the single profile unrestricted domain
property which is the “richness’’ requirement of the single profile for the analogue
to be true. Only then can the main theorem be stated.

Very little has been written so far on the inter-relationship between Decision
and Social Choice Theories and language. A subsidiary objective of this paper.
is to suggest two ‘‘linguistic’’ axioms for a social choice rule — the axiom of
definability without quantifiers. In this paper the axioms will be used mainly
in a technical manner; further analysis is needed to study their properties.

2. BASIC CONCEPTS

In this section, I will briefly introduce some basic concepts of Mathematical
Logic and use them to describe the notions of ‘profile’ and Social Welfare Function
(SWF). (For a brief overview of Mathematical Logic see Crossly [1972].
For a more thorough exposition, see for example, Robinson [1963]). The first
concept which I will introduce is that of language.

The alphabet of a language consists of

1. Variables (v, v,, v3,...).

2. Connectives (71-negation, v -disjunction, A -conjunction, —s-implication
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and «»-equivalence).
3. Quantifiers (V-for all, and 3-there exists).
4. Predicate symbols Pq,..., Pk.

In order to define a particular language, its predicate symbols must be specified.
In this paper, I use only two languages which are suitable for formulating many
results about Social Welfare Functions. Let n be a fixed number which is
interpreted as the number of individuals in the society. Let L% be the language
which contains n+1 2-places predicate symbols P,,...,P,,,. For 1<i<n
the symbol P; represents the preference relation of individual i and P, , , represents
the collective preference relation. We will write P for P,,,. Let L be the
language containing only the n predicate symbols Py,..., P,.

The alphabet of the language is used to construct well-formed formulae (wff)
1in accordance with the following rules:
1. If x; and x, are variables P;(x,;, x,) is a wif. (We will sometimes write
x1P;x, instead of Py(x, x,).) Such a wff is called an atomic wff.
2. Ifdand ¥ are wifssoare 719, PAY, v Y, P>V and ¢ V.
3. If @ is a wif which does not contain the symbols 3x, Vx (x a variable) then
3x(®) and Vx(P) are wils.
A variable x is said to be bound in @ if Vx or Ix appearin @. Otherwise it is
said to be free. A formula is said to be a sentence if it contains no free variables.

Example. The formula Vv,v,v; (v,P;v,AVv,Pv3ov,Pv;) is a sentence
expressing the transitivity of P;,. The formula —13v,(v,P,v,)is a wff in which
v, is a free variable. ’

And now to the interpretation. A model is a (K+ 1)-tuple, M={A, Ry,..., Rx>
where A4 is a set and for all j, R; is a binary relation on 4, i.e., R;= 42 We
use |[M|=A to denote the universe of M. If K=n it will be said that M is a
model of L, and if K=n+1 it will be said that M is a model of L. Thus,
where the set of social alternatives is 4, a profile (Rj,..., R,> can be identified with
a model of L, (4, Ry,..., R,).

Let @ be a wif in L (in Lx) with m free variables, and let M be a model of L
(of L¥). The statement “® is satisfied in M under the substitution of t,,..., tw
is denoted by M= ®[t,,..., t,,] and will be defined recursively according to the
following rules:

1. MEP|t, t,]1if (¢;, t,)eR;.

2. MEP[ty,..., t,] if it is not true that M =®[t,,..., t,,].

3. ME=oAYP[ty,...,t,] if both M=®[ty,...,t,] and ME=VP[ty,...,t,] are

true (and analogously for @ v ¥, ¥, d-¥),

4. If & is a wif of the form Ix¥(x,..., X,,, X) then M E=®[1,,..., t,] if there

exists t €| M| such that M =¥Y[t,,..., t,,, t].
5. If @ is a wif of the form Vx¥(x,..., x,,, X) then M =®[t,,..., t,] if for all
teM, Mi=Y[t,,..., t,, t].
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When @ is a formula of L (of L*), we say that @ is universally valid and write
E& if M@ for all models M of L (of L*).

Example. Let A={a, b, c}, let n=3 and let M={4, R,, R,, R;> bea model
of L where

R, = {(b, 0), (¢, a), (b, a)}
R, = {(c, b), (b, a), (¢, @)}
R; = {(c, ), (a, b), (¢, b)} .
Given the wif ®@(v,)=3v(vP{v; AVP,v A vP3v1) then M =®[a]and M = 19[c].

A Social Welfare Function (SWF) is a function from a set of profiles of
preference relations to the set of binary relations. Thus we can consider a SWF
to be a function from a set M of models of L with a common universe A4 to the set
of binary relations.on 4. In the following definition, the relations are not required
to be preferences and therefore, the notion Social Function is used:

Definition. Let M be a set of models of L with a common universe. A function
which maps M into the set of binary relations on the universe is called an M-
Social-Function (M-SF).

Using this terminology the single profile approach can be described as the
analysis of {M,}—SFs where M, is a model of L. At the core of Social Choice
Theory are the axioms on SWF’s. Many of the axioms are in fact sentences in
Lx. For example, the Pareto condition is the sentence

Vv, [( ,/_'{1 ViP2)—v, Py, ],

and the libertarianism axiom is the sentence A v,v,[v{Pv,—v,Pv,]. The next
i=1
definition formalizes the idea of a social function satisfying an axiom:
Definition. Let @ be a sentence in Lx. Let M be a set of models of L with a
common universe 4. Let F be an M—SF. For M={A4, R,,..., RyeM

define Mp=<{A4, Ry,..., R,, F(M)>. (Mpis a model of Lx). F is said to satisfy ¢
if for every M e M, My=®.

Example. Let n=2, and let M be the set of all models of L with a universe 4.
Let F be defined by (x, y) e F(M) if for every i (x, y)e R; where M={A4, R,, R,).
Let

@ = Vv,[P(vy, v2)=(Py(vy, v2) A Py(vy, v2))].

Then {4, R, R,, F(M)) =®, and F satisfies @ for all M in M and F satisfies &.
Finally we need some more technical terms.

Denfinition. Let xq,..., X,, be m variables. A relationship of x,..., x,, is a
formula in L of the form
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n
A (A Oy Pu(xi,x))
1<i,j<m  h=1

where 6, ; , is either 1 or —1, .= and (—1)- &= 1.

In other words, a relationship of x,,..., x,, is a conjunction of atomic formulae
and negations of atomic formulae in those variables such that for every atomic
formula either it or its negation (but not both) occurs in the conjunction exactly
once. We will consider as identical two relationships which are the same up to a
reordering of the conjunction.

ProPOSITION 1. (for a proof see Robinson [1963]). Let ®(xq,..., X,) be a
formula without quantifiers. Then there exists a formula ¥(xy,..., X,,) which
is a disjunction of relationships of x1,..., X,, such that

E VX 15y XL P(X1seees Xp) & P(Xg5eees X)] -
Y is called a normal form of &.
Example. Let
D(xy, X5) = (X PXy > T1X,P %) A (X, Pxy > X,P1X5).

Let ¥,=x,P;x,, Y,=x,P;x,, ¥3=x,P,;x, and ¥,=x,P,x,. A normal form
of @ is

(P AYLA TNV AP) V(P AP, AP AP,V
V(TP A TP, A TY3AP) V(Y A TP, AP A TIP,).

3. STRONG NEUTRALITY AND DEFINABILITY

A further concept which I wish to redefine using logic terminology is the Strong
Neutrality condition. A SWF, F, is Strongly Neutral if, for every a, b, ¢, d
(in the set of social alternatives) and for every pair of profiles (R,,..., R,)
and (Ry,..., R}),

(%) for all i, aR;b iff cRid and bR;a iff dRjc
implies
(%%) aF(Ry,...,R)b iff cF(R},...,R;)d and
bF(R,,...,R)a iff dF(Ry,..., R))c.

Notice that (*) is the requirement that any relationship of x,, x, in the language
L is satisfied under the substitution of (a, b)iff it is satisfied under the substitution
of (¢, d). Thus we can define

Definition. An M—SF, F, is said to satisfy the Strong Neutrality condition
(SN), if for all M, NeM, for all a,,..., a,€|M|, by,..., b,,€|N|, and for any
relationship @ of x,,...,x, “ME®[a,..., a,] iff N=&[b,,...,b,]" " implies
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“(ayye.. @) € F(M) iff (by,..., by) € F(N)”.

A crucial step in the proof of the main theorem is the establishment of the con-
nection between SN and a linguistic concept — the definability condition.

Definition. Let M be a set of models of L. An M—SF, F, is definable if
there is a wif @ in L with two free variables x, x, such that for all M e M and for
all ¢, t,eM, M=®[t,, t,] iff (¢, t,)e F(M). F is called definable without
quantifiers (DWQ) if there exists a @ (as above) without quantifiers.

Example. Let M be the set of all models of L such that the relations are order
relations and their universal set is the set of natural numbers. The Pareto-
extension rule is definable by the following quantifier-less formula

¥(1,v2) = (A VP AV TP,
= 1=

The rule which assigns priority to those elements which are not Pareto-dominated
is definable by the following formula:

D(vy, v2) = T1INY¥(vy, V).
It might be shown that this rule is not definable without quantifiers.

The following proposition proves the equivalence between DWQ and SN.
PROPOSITION 2.  Let F be an M—SF. F satisfies SN iff F satisfies DWQ.

PrOOF. Suppose F satisfies SN. Let MeM and a,, a,e|M|. There is one
and only one relationship in L which is satisfied in M under the substitution of
ag, a,. Denote it by @), ... Define &(x, x;)=V Py, 4, (x;, x,) where the
disjunction is over all M, a,, a, satisfying (a,, a,) e F(M). Let 4 be the set of
all those @, .- Let us prove that (by, b,)e F(N) iff NE=®[b,, b,]. If
(by, by) e F(N) then Py, ,, is one of the conjunction in 4. Thus N=®[b,, b,].
If N=®[by, b,] then there exist a;, a, in a model MeM such that NE-
Dot a1, P15 D21 and Py, .. is a relationship in 4. Thus (a4, a,) e F(M) and
(a,, a,) satisfies in M the same relationship which (b,, b,) satisfies in N. The
SN assumption implies that (b,, b,) € F(N).

Suppose F satisfies DWQ. Let ¥ be a formula with two free variables without
quantifiers defining F. From Proposition 1 there exists a formula of the form
v 0,-®(vy, v;) such that = V 0;P (v, v;) < P(vy, v,) where 6;€{1, —1} and

{<15 i}jes 18 @ “listing” of all the relationships of v;, v, in L. To prove that F
satisfies SN, assume M and N are in M, ay, a, are elements in M and b,, b,
belong to N, and for every relationship &,—

M= @lay, a,] if NE®J[by,b,].
Then
M I-: Véj'@j[al, az] iﬁ N l= V51'¢1[b1, bz]
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and also
M &= Y[ay, a,] iff N &= ¥[by, b,].
Hence,

(a4, a;)e F(M) iff (by, by)e F(N).
The following proposition will be useful later:

PROPOSITION 3.  Let & be a sentence in Lx and let M be a set of models of
L. Let F be a definable M—SF and let ¥ be the formula in L defining F. Let
® be the sentence obtained from ®= by substituting ¥Y(x,, x,) for every
occurence of F(xq, x,). Then for every MeM ME® iff My=dx.

Proor. Follows directly from the definitions.

4. GENERALIZATION OF THE SINGLE PROFILE UNRESTRICTED DOMAIN

A further concept which requires generalization is Pollak’s Unrestricted Domain
over Triples. Pollak said that a profile has this property if “for every logically
possible subprofile over three hypothetical alternatives x, y, z there exists a triple
such that the restriction of the profile to that triple coincides with the prespecified
subprofile’’. This property was a requirement for obtaining a ‘“‘single profile
analogue’’.

In the following M, M and M, are sets of models of L and k is a natural number.
Let R(M) be the set of all relationships f(vy,..., v,) for which there exist M e M
and ay,...a,€|M| such that M= f[a,,..., a,]. Pollak’s statement that M,
satisfies the Unrestricted Domain over Triples is equivalent to the statement that
R;({M,})=2R3(M), where M is the set of all possible n-tuples of preference relations
over a set which contains at least three elements. The following proposition
relates to a sentence o for which there exists a wif without quantifiers § such that
a=VYvi,..., WP(¥y..., v). The proposition connects between ‘‘the satisfiability
of o in every model in M;”’ and “the satisfiability of « in every model in M,
provided that R (M) 2R, (M,).

5

PROPOSITION 4. Let o be a sentence of the form a=Vxy,..., xB(Xq,-.., X;),
and suppose f is a wff without quantifiers in L. Let M; and M, be sets of models
in L. Assume Ri(M;)2R(M;). Then M=ua for every M eM, implies M=«
for every M e M,.

Proor. Suppose M=« for every M eM,. By Proposition 1 there is a set
{®,}je; of relationships of x,..., x, such that = a(xy,..., xk)‘b.VJ D (X505 Xp)

Suppose there exists M,eM, such that M, Tla. Then glle,...,akelel
such that M,|=—p[ay,..., a,]. Let @ be the (unique) relationship satisfying
M,|=9d[ay,...,a]. Clearly @& {P;};,. R(M;)=2R(M,), therefore, there
exist M, €M, and b,,..., b,e|M,| such that; M =®[b,,...,b]. Then M,k
=1B[by,..., b] so M= T, a contradiction.
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5. THE MAIN THEOREM

We are now ready to formulate and to prove the main theorems. Let a* and
y* be sentences in L*. Let (T—M) denote the following statement :
(T—M) If and M —SF, F, satisfies SN and o then F satisfies yx*.

THEOREM 1. Let M, and M, be sets of models of L. Assume that R, (M,)=
R, (M,) and that there exist formulae §* and §* without quantifiers in L+ such that
ok =Vv - fx(vy,..., v) and yx=Vvi---v 0%(vq,..., v). Then(T—M,) is true
iff (T—M,) is true.

Remark. It should be emphasized that the k in the condition R,(M,)=R,(M,)
is the same k as that which indicates the number of bound variables in ax and yx*.

PrOOF. Suppose (T—M,) is true. Let F be an M, —SF which satisfies SN
and ax. From proposition 2, F is DWQ. Let & be a formula without quantifiers
in L defining F. Let «, B, y and 6 be the formulae in L obtained from ax, f*, y*
and 0% by substitution &(x,, x,) for every occurrence of P(x;, x,). Thus a=
Vv v Biyeen, v) and p=VYv -1, 8(vq,..., v). R(M)2R,(M,) and MEa
for every M eM,. Therefore proposition 4 implies M=o for every MeM,;.
Define an M; —SF, G, by (a,, a,)e GM) iff M=®[a,, a,]. Clearly, G is
definable and by proposition 2 G satisfies SN. From proposition 3 Mg k= d*
for every Me M,. We have assumed that (T—M,) is true, therefore Mg y*
for every M e M, and from proposition 3 M=y for every M eM,. Using the
fact that R (M,;)=2R,(M,) and proposition 4 we get M=y for every MeM,.
Therefore M =y+ for every M e M, and (T—M,) is true.

From the above proof it is clear that if M, 2M, we need proposition 4 only
once and the restriction on the form of y* is redundant. Thus we have—

THEOREM 2. Let M, and M, be sets of models of L, M;2M,. Assume that .
R, (M,)=R(M,) and that there exist B* without quantifiers in L* such that

ok = VX1,.e, XeB%(X 150005 Xp) .
Then-(T—M,) is true implies that (T—M,) is true.

Now, let us return to the question — ““Is there a single profile analogue to every
theorem in Social Choice Theory?’” The answer depends, of course, on the
meaning we give to the term “‘single profile analogue’’.

We start with the assumption that (T—M) is true, where M is the set of all
possible models of L+ and where the relations are preferences on a given set A.
The single profile analogue is (T—{M,}). The condition on M, for the analogue
to be true is Ry ({Mo})=R(M). The above theorems proved so far confirm the’
hypothesis when the assertion (T—M) satisfies a specified structure. They also
show which k is required for the analogue to be true. The theorem does not hold
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when (T—M) has a different structure. The following example proves that there
are sentences a* and y* in L% such that (T—M) is true but given any k we can
construct a model M, such that R({M,})=R,(M) and still (T—{M,}) is not true.
Let ax be the formula in L#

[3vi Vv, _/_'(1 (v2Pvy AV IV Pivy)1—— [V va[vi Pyvaeov Pyp]] .

(If there is an alternative which is Pareto-dominated by any other element, then P
is identical to P;). Let y* be the formula Vv,v, (v;P;v,< v{Pv,) (1is a dictator).
Let A be a set which contains at least 3 elements and let M be the set of
all <4, >4,..., >,> where >, is a preference relation on 4. Clearly (T—M) is
true. That is, for every M — SF satisfying SN and ax the M — SF also satisfies yx.
However for any given k, one can construct a model such that every description of
Vi»..-» V¢ Which is satisfied in M is also satisfied in M, but in which there is no
alternative which is Pareto-dominated by all the other elements. In this model,
the M—SF which is identical to individual 2’s preference satisfies a*, and SN
but does not satisfy yx. The key to constructing such an example is of course the
fact that the quantifiers 3 appears in ax. This violates the structure required of o
in theorems 1 and 2.

6. EXAMPLES

For the sake of simplicity all the examples are confined to the class of (T—M)’s
in which M is the set of models of L with a common universe A —(]4|>3) and all
the relations are connected, transitive, and asymmetric.

6.1. Arrow’s Impossibility Theorem. Let ax be the sentence
ok = Yvv,va[(( /\n V,Pv )=V, Pv ) A (v3Pvy AV, Py > V3 Py))---
i=1

s APy vy Pvy) A(viPyy)].

The sentence ax is in L+ and it expresses the Pareto condition and the requirement
that the social relation be a preference relation. Let y* be the sentence

n
V Vv v,(vi Py, & v Py,).
i=1

The sentence y* is also in L# and it expresses the condition that there is a dictator
(but not necessarily the same dictator for every profile).

Theorem 2 provides the single profile analogue for Arrow’s Impossibility
Theorem. (See Pollak [1979] and Roberts [1980]): Let M, be a model of L
satisfying R;({My})=Rs(M). If F is an {My}—SF which satisfies (i) SN (ii) the
Pareto condition and (iii) F(M,) is a complete and transitive relation then F(M,)
is one of the individuals’ preferences.

6.2. Gibbard’s Oligarchy Theorem. Gibbard’s result states that any SWF
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satisfying Pareto, Independent of Irrelevant Alternatives and Quasi-transitivity
of the social preference is oligarchic. That is, there exists a nonempty set of
individuals B such that if for every ie B yP;x then yPx and if for one of the
members of B xP;y then not yPx.

Theorem 2 implies a single profile analogue for Gibbard’s theorem Let M,
be a model of L satisfying R;({M,})=R;5(M). If Fisan {M,}— SF which satisfies
(i) SN (ii) the Pareto condition and (iii)) F(M,) is quasi-transitive then F(M,) is
oligarchic. To see this, define

ok = Vv, v,v3[(( A v,Pv, )=V, Pv) A(v3Pv, A v, Py — T1v, Py3)]
i=1 :

and
px = Vv, V [((A v,Pv )=V, Pv) AV v Py)— T1v,Pyy)]
B#¢ ieB ieB

The sentence ax is in L and it expresses the Pareto condition and the requirement
that the social relation be quasi-transitive. The sentence y* expresses the assertion
that there exists an oligarchy (though not necessarily the same oligarchy for every
profile). As mentioned the single profile theorem is obtained directly from
Theorem 2 and Gibbard’s theorem.

6.3. May’s characterization of the majority rule. May [1952] has proved
that the only SWF which satisfies independence of irrelevant alternatives,
neutrality, anonymity and positive responsiveness is the method of majority rule.
Pollak proves a single profile analogue to May’s theorem referring to profiles that
satisfy the “unrestricted domain over pairs U*2”’ in contrast to the “unrestricted
domain over triples U*3”’ which was required for getting the analogue for Arrow’s
impossibility theorem. Theorem 1 is useful for proving Pollak’s theorem again
and for understanding the differences between U*2 and U*3. Assuming ITA
and positive responsiveness anonymity can be expressed by the formula

ok = VV1V2<(DZ/A D(vy, v2) <> P(vy, v2))

where 4 is the set of all disjunctions of descriptions which satisfy—
(1) if A 6;P{(v,, v,) is in the disjunction then for every permutation o of {1,..., n}
i=1
/'{ 0,:Pi(vy, v,) is in the disjunction.
i=1

(i) if A 8;P(v,, v,)is in disjunction and for all i §,>3; then A 8,P(v,, v,) is in
i=1 i=1

the disjunction.
Define

pe= Vv VA Py, vy) o Py, v,)).
26;i>0i=1

The sentence y* expresses the majority rule. Now, theorem 1 together with May’s
original theorem imply Pollak’s theorem.
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7. FURTHER IDEAS

(a) Proposition 2 reveals the DWQ to be a very strong assumption about social
welfare functions. A more natural assumption in my opinion is the definability
assumption.

Whereas definability without quantifiers and the Pareto condition ensure the
existence of a dictator, mere definability together with the Pareto condition is
not sufficient for this to be the case. The following SWF is definable in Lx,
satisfies the Pareto condition and is not dictatorial:

Mayjority rule if majority rule induces an order
F(RY,...,R") =
R! otherwise.

The characterization of definable relations needs further research. One

result about definable relation is stated in Rubinstein [1980]. If M, satisfies a
certain richness condition then every {M,}—SF which is definable in L and
satisfies Pareto condition is dictatorial.
(b) The theorems which have been proved here can be easily extended to other
languages which consist of n predicate symbols, not necessarily two-place
predicates. Such a language may be useful in analyzing m —M—SF, that is
functions which map a set of models M to the set of m-place relations. In a
previous version of this paper (Rubinstein [1980]) the results reported have been
generalized in this way. However, I believe that the current simpler version of
this paper may reveal the ideas of this research better than the more general
version.

Hebrew University, Israel.
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