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1. INTR~O~CTION 

As the well-known “Paradox of Voting” indicates, a decision system under 
majority rule does not necessarily have an equilibrium; that is, it might be 
that for every alternative there is a majority preferring another. Many 
writers, particularly political scientists, thus inferred the weakness of 
majority-rule systems (see, for example, Brams (1976), Riker and Ordeshook 
(1973)). A social system with no equilibrium might be thrust into continuous 
cyclic change. Moreover, the individual members who believe in democracy 
would be permanently dissatisfied, since they are always convinced (and 
correctly so), that there is a majority in favor of a social reality different 
from the existing one. 

Many attempts have been made to find sufficient conditions for the 
existence of equilibrium in systems under majority rule, for example, Arrow 
(1963), Davis and Hinich (1972), Dommet and Farquharson (1961), 
Nakamura (1975), and Plott (1967). The prevalent impression arising from 
reading these works is that only strong conditions on the decision system 
lead to the existence of equilibrium. (This impression is expressed 
topologically in Rubinstein (1979).) 

The starting point of all these papers is the definition of equilibrium and 
the identification of social stability with the existence of equilibrium. The 
existence of a majority preferring b to a deprives a of stability. The 
individuals are assumed not to take into account what happens after the 
system switches to b. 

In this paper I will attempt to see if the general picture is less pessimistic 
when we assume that the individuals are aware of possible future 
developments. The behavior pattern examined is that determined by the 
following reasoning: “True, I prefer b to a, but if b is adopted, then a 
situation arises where the majority prefers c. Since c is worse than a from my 
point of view, I will not take any chances and will not vote for b in place of 
a.” A social possibility will be considered to be stable if no majority exists 
for change when all the individuals adopt this more farseeing behavior 
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pattern. Further analyses are needed to investigate behavior patterns which 
are intermediate to the unstrategic behavior which gives rise to the “Paradox 
of Voting” and that assumed here (proper solution concepts may be those of 
Vickrey (1953)). 

There are two main parts to this paper following the description of the 
model and the definitions of the stability set, J (Section 2). In the first part 
two nonemptiness theorems are proved (Section 3). In the second part, the 
concept of dynamic system as defined by Maschler and Peleg (1976) is used 
to examine the stability of J in the dynamic system corresponding to the 
behavior pattern described (Section 4). 

2. THE MODEL 

A social decision system will be formulized by an ordered triplet 

where 

( 1) A is the set of social states. 

(2) N = (l,..., n} is the set of individuals and Li is the preference 
relation of individual i. The relation Li is assumed to be a reflexive, 
connected, and transitive relation. 

(3) The institutional method by which the society makes decisions is 
denoted by K’G 2” x 2“ (2” is the power set of N). We require that 

(i) W#@ 
(ii) (S,, S,) E W* S, n S, = 4. 
(iii) If (S,, Sz) E W, S, U S, C T, U T,, S, G T,, and T, n Tz = #, 

then (T, . TJ E W. 

(iv) If (S,, S,) E W then (N- S, - Sz, 4) & W. 

The interpretation of W is that “(Si, S,) E I+“’ when, for any two choices 
a and b, if the individuals in S, vote for b and the individuals in S, abstain, 
then the society will adopt b whatever N - (S, U S,) do. Here are some 
examples of possible sets W within our framework: 

(a) Dictatorship. There exists i, such that W= {(S,, S,) / i, E S,}. 

(b) An absolute majority is required to bring change. 
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(c) A relative majority is required to bring change. 

(d) Same as (c), but a chairman i, has the casting vote. 

W=((S,,S,)IIS,/>IN-S,-SS,/or 

IS,I=IN-S,--Sz/ and &ES,). 

DEFINITIONS. (1) For all S G N, + is defined by 

a -& b if ((i~S/a<~b},(i~SIa-ib))E W. 

(5 describes the decisions the coalition S can enforce whenever all the 
members of S behave honestly) 

(2) < is defined by 

a<b if there exists S c N such that a KS b. 

(3) The core, C, is defined by 

C = (a E A 1 no b E A satisfies a < b). 

An element of C will be called an equilibrium of the system. 

(4) a Xs b if a xs b and there does not exist i E S and b < c such that 
C<iU. 

(5) a < b if there exists S such that a +$ b. 

(6) The stability set, J, is defined by 

J= (afA Ino bEA satisfies a<b). 

Thus the stability set is the set of all the social alternatives for which no 
coalition, adopting the above behavior pattern, can by honest voting enforce 
another alternative. 

The model is also suitable to describe a decision-making institution with 
two identical houses, a lower house and an upper house. The lower house 
decides whether to replace a by b. If it accepts b, the upper house may 
modify b and replace it by c which is the final decision. Clearly members of 
the lower house will think twice before voting for b. They might first check if 
the upper house will contain a majority in favor of modifying b to c, which 
might be worse for them than a. The stability set is the set of equilibria 
whenever no enforcible contracts are allowed between members of the two 
houses and the members of the lower house adopt the above very careful 
behavior pattern. 
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EXAMPLES. (1) Let 

A = {a,b,cJ, 

w=((S+,S=)IJN--S+--S=I<IS+J), 

N= (lJ.31, 

and suppose 

c-c, b<,a 

a<,c<,b 

b<,a-,c. 

Then bh3,a ~-6,~~ b and cka and akc. Thus C= {a} but J= {a,c). 

(2) The stability set may contain points which are not Pareto-optimal. 
Denote P= (aEA lthere is no bEA,aKib for all iEN}. 

Let 

A = {a, b, c, d}, 

W= ((S+,S=)lIN-S+--S=I <IS+\}, 

N= (1,231, 

and suppose 

a<,b<,c<,d 

c<,a<,b<,d 

d<,a<,b<,c. 

Then a E J but a 65 P. 

This example demonstrates a weakness of our solution concept. It does not 
support the following line of reasoning which would remove a from the 
stability set. “If I support the replacement of a by 6, then I might arrive at c, 
which is worse for me than a. However, c may be reached from a as well, so 
I may as well support b.” 

3. NONEMPTINESS THEOREMS 

THEOREM 3.1. Let (A, {<i)l=l, W) b e a social decision system, where A 
is finite and for all i, si is a linear order (also antisymmetric). Then the 
stability set is nonempty. 



154 ARIEL RUBINSTEIN 

ProoJ For all a E A, define F(a) = 1 (b 1 a < b}[. Let a, satisfy 
W,) = mk4 F(a). Let b and S satisfy a, <s b. The relation < is asym- 
metric due to the conditions on W. Therefore there exists c E A (c f b, 
c # a,) such that b < c and a, < c. Thus there exists i E S such that c xi a,. 
Therefore a, E J and J # 4. 

Clearly if A is infinite, J may be empty (for example, in the case where A 
is the set of the natural numbers and the individuals’ preferences is the 
standard order). I will now prove a nonemptiness theorem for social decision 
systems, where for all i, Li is a well ordering (i.e., for any B, a subset of A, 
there exists bE B such that b si b for all b E B). 

THEOREM 3.2. Let (A, (<i}~_,, W) be a system satisfying 

(i) A is an inznite set. 

(ii) For all 1 < i < n, Li is a linear well ordering. 

Then the stability set is nonempty. 

LEMMA. Let R and S be two linear well orderings on an infinite set X. 
Then there is an infinite set Y, Y s X, such that R and S are identical on Y. 

ProoJ Define a graph’ (X, G): 

(a,b)EG iff aRboaSb. 

Assume that there is no full* infinite subgraph of (X, G). Then, there is an 
infinite empty subgraph of (X, G) ( see Chang and Keisler (1973)); denote 
this subgraph (G, G I,-). Every subset of C has a maximal member according 
to the relation R which is therefore the minimal member according to S. 
Thus C is well ordered from above and below by S and is therefore a finite 
set. 

COROLLARY. P, the set of Pareto-optimal alternatives, is finite and 
nonemptv. 

Proof. Assume P is infinite. From the Lemma there is an infinite subset 
of P on which all the individuals’ preferences are identical, in contradiction 
to the definition of P. 

Proof of the theorem. From 3.1 the stability set of (P, {si Ip}yz 1, W) is 
not empty. Let p be a member of the stability set. It will be proven that p is 
also a member of the stability set of the original social decision system. 
Assume p +=s q. Without loss of generality q E P (otherwise choose an <,- 
maximal of {t 1 q <i f Vi}). From the choice of p follows the existence of 
tEPandiESsuchthatq<tandt-+p. 

’ A graph is a pair (C, G), where G G (K & C 1 lKJ = 2). 
2 (C’, G) is a full graph if G = (KG C 1 IKl = 2). (C, G) is an empty graph if G = 4. 
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4. STABILITY THEOREM 

Let us begin with definitions and notation which are taken from Maschler 
and Peleg (1976). 

A (set-valued) dynamic system is an ordered pair (X,(o), where X is 
metric space and (D: X+ 2x satisfies p(x) # 4 for all x E X. 

A q-sequence (starting at x0) is a sequence (x’) such that x0 E X and 
x’+ ’ E cp(x’) for t = 0, 1. 2 ,... . 

A point .uE X is called an endpoint of (D if q(x) = (x}. The set of 
endpoints of (o, will be denoted by Et(o), 

A nonempty subset of X, Q, is called stable with respect to cp if for every 
neighborhood U of Q there exists a neighborhood V of Q such that if (x’) is 
a (o-sequence starting in V then x’ E U for all t 2 0. A point x E X is called 
stable if {x) stable set. 

Let g(.u) = (G,(-Y),..., G,(.u)) be a vector of m real-valued functions on X. 
A point a E R ” is called Pareto-minimal with respect to g if there exists 
.YE X such that g(x) = a and if whenever FE X and Gi(?v) < a, for 
i = l,..., nz, then g( )I) = a. 

Let a be Pareto-minimal with respect to g. The set Nu(g, a) = 
bEXIg(x)= I a is called nucleolus of g with respect to a. 

g is called cp-monotone if for all .Y E X, y E q(x) ti G;(x) 3 Gj()p) 
i = I,..., WZ. g is called strictly p-monotone if it is q-monotone and for all 
x E X and -V E p(x), 4’ # x + GA(x) > Gk( y) for some 1 < li < m. 

In the following, the discussion is restricted to social systems satisfying: 

(A.]) A is a nonempty, convex, and compact subset of E”. 

(A.2) For any i, si is a strongly convex3 continuous relation. 

(A.3) For all (R,,&), (S,,S,)E W (R,URz)nS,##. 

(For example, this condition is satisfied by examples a, b, d in Section 2.) 
The above assumptions have often appeared in the literature, and have been 
followed by “pessimistic” conclusions (see, for example, Davis and Hinch 
(1972) and Plott (1967)). 

THEOREM 4.1. Let (A, (si)y-l, W) b e a social system satislVing (A. 1). 
(A.2). and (A.3). Let (A, 9) be a dynamic system satisfiling 

P(X) = (xi ifthere is nopEA, SU.I 

= i.JJlx~=Yl otherwise. 

Then J# 4, and there exists JS J such that J is stable relative to rp. 
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ProoJ Assumptions (A.l), (A.2), and (A.3) guarantee the existence of 
continuous, single-peaked strict quasi-convex loss function (di}y , 
corresponding to (&}l=, (X Liy o d,(x) > di(y), there exists a unique 
ui E Ek such that d,(u,) = 0 and for all a # b and 0 < 1 < 1, 
d,(a) < di(b) * di(~b + (1 - A)u) < d,(b)). The loss functions (di}y=, will be 
fixed for the rest of the proof. 

Define a vector function ( gR)OtR EN which will serve as a Liaponov 
function for the dynamic system as follows: for all 9 #R G N, g, : A --t E’ 
and 

g,(a) = ;y 2 di(b) if there exists a < b 

= ~ d,(U) 
,z 

otherwise. 

di are bounded (continuous functions on a compact set) and thus 
0 <g,(a) < 03. Denote g,i, by gj. 

LEMMA A. Cid di(a) G sitCal* 

Proof. If a E C g,(a) = CieR d,(a). Otherwise, let a <r b. From the 
strong quasi-concavity of the individuals’ preferences, for any 0 < E < 1 and 
for any i E T a xi EU + (1 - .s)b and from assumption (iii) on W 
a <T EU t (1 - E)b. Therefore CioR di(sa + (1 - c)b) < g,(u) and together 
with the continuity of the loss functions this implies the Lemma. 

LEMMA B. g is p-monotone. 

Proof: Let b E q(u) and let us assume a gr b. If there is no c such that 
b < c, then g,(a) > Xi,, di(b) = g,(b). If there exists c such that b < c, then 
for every i E T, a Li c, and from the strong convexity it follows that 
a xi EU + (1 - E)C for all 0 < E < 1 and for all i E T. Then assumption (iii) 
on W assures that u <r EU + (1 - E)C and xi,, di(eU + (I - E)c) < g,(a). 
di (i = l,..., n) are continuous, so when E + 0 Ci,, d,(c) Q g,(o). This holds 
for all b r c. Thus g,(b) <g,(a). 

LEMMA C. g is strictly p-monotone. 

Proof: Let b E &a) and suppose a xT 6. From the assumptions on W 
there exists i E T such that a ii b, and if b E C 

g,(b) = d,(b) < d,(a) <g,(u). 
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If b G? C, let b -K,~ c. Let i, be a member of S, which also satisfies a +,, b (the 
existence of such an i, follows from A.3). Thus, 

< z: d;(a) + d;,(a) - & = 1 d;(a) - E 
iel‘-Ii0 ie7 

< g,h) - ‘% 

where E = minipT+ d,.(a) - d,(b) > 0. 
Since c is arbitrary and E is independent of c, 

g,(b) < g,(b) + E < gT@). 

LEMMA D. For any 0 # R L N, g, is lower semicontinuoux4 

Proof. Let a, + a. If a E C, then for every i E N g,(u) = 
d;(u) + di(u,) < g;(u,), hence g;(u) < & gi(U,)* 

Suppose for some b E A a KS b. Let 0 < E < 1 and j E S. From the strong 
convexity it follows that a xi EU + (1 - e)b, and by the continuity of $, 
there exists n, such that for every n, < n a, xj EU + (1 - &)b. So far large 
anough n, u,, < EU + (1 - &)b. g,(a,) > CisR di(&u + (1 - E)b); consequently 
l@ g,(a,) > xi,, di(~u + (1 - &)b). Letting E + 0, and by the continuity of 
the d,, we obtain &g,(u,) > xi,, d,(b) and thus lim g,(u,) >/g,(u). 

LEMMA E. For any 4 # R c N g, is upper semicontinuous. 

Proof: Assume (a,) is a sequence such that a,, -+ a and 
lim g,(u,) > g,(u) + E. Clearly for almost all n, a, G? C. Thus w.1.o.g. assume 
that for all n a, xr b,, CisR d,(b,) > g,(u) + E and b, -+ b. By continuity 
of (d,), Ci,, d,(b) > g,(a) + E. From Lemma A, b # a and from the con- 
tinuity of (si), for all i E T, a 5; b. By the strong quasi-convexity of 
(si), for all 0 < t < 1 and i E T. a Ki tb + (1 - t)a and as t + 1 
xi,, d,(b) +- Ci,, di(tb + (1 - t)u) < g,(u), leading to a contradiction. 

Proof of the theorem. Clearly if g is strictly (o-monotone every Nu(g, a) 
is a subset of E(q) = J. X is a compact metric space, g is q-monotone, and 
(g,) are continuous, so Nu( g, a) is stable and closed (Maschler and Peleg 
(1976)). 

’ A real-valued function f is lower (upper) semicontinuous if for any a and a, + a. 

lim .fW >f(a) W fW G(Q)). - 
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XI 

FIGURE 1 

An Example for Calculating the Nucleolus. 

Let 

N= {1,2,%4}, 

A = The unit square, 

W={(S+,S=)lIN-S+-S=l<IS+I}, 

and for all i E N 

d,(x) = /I x - ui )I (see Figure 1). 

Let us calculate g,(x). It is readily ascertained that the worst possibility for 1 
in either of the states a and b is a; from this we have 

&TIC@, 3 xz)) = (x,2 + x22)“2 if x,+x,>1 

= (( 1 - x,)’ + (1 - x2)2)1/2 if x, +x2 < 1. 
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The only Pareto-minimal point obtained is 

a=(+,+,-:,-:, I,... , 1,:, . . . . :,q, 
e---w- 

IsI= /s/=2 lSl=3N 

and the nucleolus is (i). 
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