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Strong Perfect Equilibrium in Supergames! )

By A. Rubinstein, Jerusalem?)

Abstract: The set of payoffs for the strong equilibria is characterized for supergames when the
evaluation relations are according to the limit of the means and where no coalition can correlate
its strategies in a randomized way.

It is proven that this set is identical to the set of payoffs of the strong perfect equilibria. On the
other hand an example is given to demonstrate that perfection is a significant notion in supergames
where the evaluation relations are according to the overtaking criterion.

1. The Model®)
The single game G is a game in strategic form

G =S}, (m}L ).

i=
The set of playersis N = {1, ..., n}. For each i €N, the set of strategies of i is ATH

n
S; is assumed non-empty and compact. § = I S, is the set of outcomes. An element
i=1

in § is called an outcome of G.

Each player i has a payoff function m;:.§ > R (R = the reals), which is continuous
in the product topology.

Given o €S, the payoff vector of o is the n-tuple 7(0) = (m,(0), . . ., m, (0)).

The supergame G~ is (G, <, , ... ,<,) where G is a single game and the <’s are
evaluation relations on real number sequences; more exactly, < isa binary relation on
RN which is transitive, anti-symmetric, but not necessarily a total order. A strategy for
iin G™ is aset {f{#)};2;, where f(1) €S;,and for t > 2, £,(r): S{-t-1} > . Thus
a supergame strategy is a choice of strategies at every stage, where each choice is pos-
sibly dependent on the outcomes of the preceding games, and where all players know
all the choices made by all the players in the past.

The set of supergame strategies of player i is denoted by F,. Fis the set of n-tuples

n
of strategies; F = .HIFi
Pty
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3) See Roth [1975].
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Given f € F, the outcome at time 7 is denoted by a(f) (), and is defined inductively
by

o) ()= (D), .. ., £,(1)
o(f) (o) =(...,fi(t)(o(f)(l),...,a(f)(t—l)),...).

Define a relation <zl. on F, induced by <;, as follows:
Forallf, g EF, f<gif

{771' (O(f) (t))}::l <i {77,' (o(®) (t))};l

Before passing to the main definitions, some generally usefull notation is introduced:

1. Let A be aset,a EA".'The (n—1)tuple (@1,...,8;1, 84> ,a,) is denoted
by a”, and the pair (¢, ;) is identified with a.

2.IfBCN, {g;};cp is denoted by 2B, and (aB ,aV B ) is identified with a.

3. Given sets {4 i}ie B igBA ;is denoted by AB.

4. Given fE€ Fand r(1), . . . ,r(T) €S, the n-tuple of strategies determined by f
after a “history” r(1), . . ., r(T) is denoted belr(l) Iy thus

(f|r(1), A r(T))i @) (s(1),..., s(t— 1) =
LT+ D rQ),...,r(1),s1),...,s¢t—1)).

5. Givenx, y € RB, x <<y denotes that x; <y; foralli€B.

Definition. fEFisa (Nash) equilibrium in the supergame G~ if for all i, and for all
hEF,f& (f, h).

This definition of equilibria in the supergame is known to be too general [see for
example Aumann, 1976; and Rubinstein, 1977]. One reasonable restriction is by the
notion of perfect equilibrium.

Definition. f € F is a perfect equilibrium in the supergame G~ if for all
r(1),...,r(DESO< T)’fw(l),...,r(T) is an equilibrium in the supergame.

This paper investigates the strong equilibria of supergames (s.g.) [see Aumann, 1959,
19601, that is those n-tuples of strategies in s.g. where no coalition of players can alter
their strategies to bring profit to all members of the coalition. Formally:

Definition. f € F is a strong equilibrium in G if there does not exist @ + BC N, and
g2 € F8 such that for all i € B, V8, g%) >, f. '
The notion of perfection is applied to strong equilibrium as follows:

Definition. f EF is a strong perfect equilibrium in G™ if for all
r(1),...,r(DHES flr(l) r (D) is a strong equilibrium in G*.
The main evaluation relation considered is the Limit of the Means Evaluation Rela-
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tion (L.M.E.R.), defined by
n
t=21 Yt 7%

x <€y if 0<lim (x, y €ERN).

The other evaluation relation considered is the Overtaking Criterion Evaluation Rela-
tion (O.T.E.R.) defined by

n
x €y if 0<lim Zlyt—x (x,y ERN),
t:

t

(For an axiomatic characterization of the O.T.E.R. see Brock [1977}).

T
z m,0) (1)

An n-tuple of strategies f is summable if lim t—:—T———— exists for all i. The

vector of the limits is called the payoff of fin G, and is denoted by 7(f).
' f€E€Fis stationary if there exists o €S such that for all ¢, 6(f).(¢) = 0. Denote this
a by ().

It is proved in Aumann/Shapley [1976] and Rubinstein [1977] that if the <’s are
LM.ERs, then the payoff set of the summable/stationary perfect equilibria is equal
to the payoff set of the summable/stationary equilibria. If the </sare O.T.ERs, the
difference between the two sets is “marginal” [proved in Rubinstein, 1979].

Together these results indicate that when considering Nash equilibrium in super-
games, the concept of perfection does not enable the isolation of a smaller solution set.

In section 2 the set of payoffs of the summable strong equilibria is characterized in
a supergame where all the <€ i’s are LM.E.R.’s. It is proved that this set remains unchan-
ged when the requirement of perfection is added. But when considering strong equili-
bria in supergames where the < ;sare O.T.E.R.s, perfection becomes significant. The
matrix game described in section 4, the “‘Amnesty Dilemma* has a stationary equili-
brium but no strong perfect equilibrium. Furthermore, this property is insensitive to
“small” changes in the payoffs.

2. Strong and Strong Perfect Equilibria in Supergames with LM.ER.’s

Let A be a set. Define C(4) = :
{clc:4 (0,11, c(a) > 0 for a finite number of @ €4, and éA c@)=1}.
a

Thus C(A) is the set of the densities on 4 which take positive values on a finite set
only. For every ¢® € Cc(S%)and every YVB e sN-B write

m(e®, 7By for 2 p B (B) - m(sF, o ME).

Definition. a €R" is a pareto-optimal payoff (in G) if a € conv #(S) and for no
b €Conv n(S) isa << b.
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Definition. a €R" is a desired payoff if it is pareto-optimal, and if for all @ # BCN,
there exists 'yN ‘B € §N-B qych that for no ¢ € C(SB) is m (B, yV-B ) >a; for all
i €B. A desired payoff has the property that for all coalitions @ # BCN, there isa
corresponding “punishment** yV-8  inflicted by N — B, such that even if the players
in B could randomly coordinate their strategies in a single game, they could not
guarantee more than the desired payoff offers for them all.

The following lemma, taken from Aumann [1960, Lemma 5.2] will be used in the
main propositions of this section.

Lemma 2.1. Let Z be a finite set, and let y € C(Z). For all maps ¢ : N > Z, for all na- ‘
tural numbers &, and for all z € Z, define Py (k, z) by

p, Kk 2)=1G1¥() =z]<k}l

(0 v (k, z) is the number of times ¥ takes the value z up to time k).

p, (k 2)
X =y(2).

Then there exists Y : N = Z such that for all z €Z, lim

Koo
The following proposition gives a necessary condition for summable f€ F to be a
strong equilibrium in a supergame with LM.E.R.’s.

Proposition 2.2. Let G = (G, <, , . . ., <, be a supergame where all the <;’s contain*)
the LM.E R. If the summable strategy f € F is a strong equilibrium in G*, then
n(f) = a is a desired payoff.

Proof: conv 1(S) is closed, hence a € conv 7(S). Suppose a is not desired. Then there is

a B # 0 such that for all sV "8 € S¥°B there exists cB € C(SB) where m;(cB, sV-8) >4,

for all i € B. Now, sup min {m; (cB , sN-B ) —ai} is a L.s.c. function of sV-B.
cB eC( SB ) i€eB

Therefore there is an € > 0

0<e< min sup  min {ﬂi(CB, sV-By—4fy.
sN'BGSN'B cBeC (SB) i€B
Since ., i=1,...,n,are uniformly continuous, there is a finite open cover
Uy, ..., U, of Ssuch that forall s, t € Uj, and for all 7, | ni(s) —ni(t) | < €/2. Since
SN-B and SB are compact, there is an open cover of V-8 {0,, ..., 0, }. such that for

all 0; and for all sZ € §% there exists m such that v, 2 Oj X {sB}. Take rN'B(i) € 0,-,
and c8 (/) satisfying

nl.(cB 0, V-2 —a;>¢ foralli.

Let \p].: N->S58 be maps satisfying, for all sBe SB,

4) Let R, S be a binary relation on a set A. S contains R if forallg, b€A aR b =a S b.
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p, (ks
lim —L——=¢5 f)] (sB).
k-~ K

Their existence is guaranteed by lemma 2.1.

Define g; € F; for all i € B inductively, together with m; .(1), the number of times B
use cZ () up to tlme t, as follows:

Letj, satlsfny (1)60
Then forall i€B, 1 <j <L

gi(l) = (‘ph (D),’

1 J=h
m].(l)=

0 otherwise.
Proceeding by induction, let j +1 satisfy

R TP QYO R L

Theng, (t + 1) ({o(*V8, gB) )}, . ) = [lpjm(mjtﬂ(z) +1)]; and g,(¢ + 1) is de-

fined arbitrarily at other “histories” in its domain.

m].(t)+1 P =1
m].(t +1)=
m; (1) otherwise.

Write T
z m (Ve g% )

T,(T) for I{t 1), =/, 1 <t <T}1; then lim =——— >

2 1B (N, g8) (1,1 B(7)
>1 t=1 —Sz
- T 2
L
2 pZ po, (TD),s%) w5,V EG))
= lim j=1 s~ &8 ]
ln = 7
25D pZp @y, GO, sHITON - 765 EG)
T

|
m

=lim

N

For j satistying T; (T) ?“’,
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py (T(T),s?)

lim 52 p ——’TTG)——— e, 5B, VB = (), PV B () >a, +e.
Thus
z 1,0, ) (1)
l'ﬁﬁl T >a;+ %

Therefore for all i € B, (g5, f¥-8) > f.
The following proposition will give a sufficient condition for a payoff in 7 (S) to.be
the payoff of a strong perfect equilibrium of a supergame with LM.E.R’s.

Proposition 2.3. Let G™ = (G, <,, ..., <n) be a supergame where forall 1 <i<n,
<;isan LM.ER.

If a €R" is a desired payoff, then there exists f € F, a strong summable perfect equi-
librium such that 7 (f) = a.

Proof. For every 0+ BCNlet 7” "B pe some strategy in SV which guarantees that
for all ¢B EC(S ) there is i € B such that m, (c ,YN- B) <g;.

The existence of such a Y2 follows from the deﬁmtlon of desired payoff.

Now, a € conv 1(S), thus there exists ¢ € C(S) such that m(c) = a. Let { be a map
from the natural numbers into S, satisfying

p, (k, 5)
lim L]

Jm = c¢(s).

By Lemma 2.1 such a map exists.

For every s(1),...,s(T) €S, define B(s(1), . . . , s(T)) the set of profit-making
deviants after s(1), . . . , s(T), in parallel with the definition of f € F; all this by in-
ductionon T'.

B@)=9
£, () =),

(A fA=BG),...,s(T—1)U

U{ils (DD 6A),. .., s(T—1) 0}

and if foralli€ A4 /

B(S(l), ceey S(T)) = 1 T ﬂt(S(t)) 1
z

>a. +—
=1 T Y

@ otherwise

\
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( 7;_N~B(s(1), « e 58(T) ifB‘(s(‘l), o, s(T» £0
and i € B(s(1), .. .,s(D)
arbitrary if B(s(1),...,s(7)) ¥ @ and
£ T+1D)6QA),...,sM)= i€B(s(1), . ..,s(T)
Y; (T—k)if B(s(1),...,s(T))=0and
k=max {t|B(s(1),...,s(t)*9
ort=0}.

Letr(1),...,r(D)ES(T = 0). Write ffo_rflt(l) o (T To prove that fis a strong
perfect equilibrium it suffices to prove that fis a strong perfect equilibrium.

Lemma. Let KB € FB; define D(¢) by
D@ =B((1),...,r(D, o, By (1), ..., 0B, VB) (1))
Then, for all ¢, there exists t; > t, such that D(¢,) = 0.

Proof. Suppose not. From the definition of the set of profit-making deviants, for all
to <t<s ‘

0+ D(10) CD(H) S D(s) C .

Thus there exists 7, <t' such that forall ¢' <¢, @ # D(t) = D(t'). Hence for all
t' <1,

ON-D (] (hB,FV'B) (t) = ,yN-D (t').

Now forall t' < ¢,

1 T. t :
7 LE e+ 2 n o™ wf) @)=

1 T t' : t — :
T LE W@+ 2 mei™ K@) * z m@P ) @)

and for some i € B (dependent on #,) < [C; + (t1 — ') a;](C; is the sum of the

1
T+1,
first two terms). The last term is less than ¢, + ———

T+t
tradicting D(¢, ) ¥ 0. From the lemma, applied to the case B = ), and from the defini-
tion of f it follows that for all i,

for sufficiently large ¢, , con-

1 -
> £ n0@ e,
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Let hB € FB. From the lemma, there exists T such that for all T, <t, D(¢)C B.
Two separate cases arise:

1. There exists 7; < T such that for all T <t, D(¢) = 0. Then there exists K such that
forall K <t,

p
> 100 1) =0t 7By ()= y (- K)
Hence
1 K = p—K 1 >
;t=21 m (o (F) () + N I—’—k_t—z m; (0(f) (1)) a;.

Thus for all i €B, f €, (F¥ 8, nB).

2. There are an infinite number of ¢ such that D(r) # 0.
Let to = T be such that D(to) * @ (D(#0) C B). From the lemma it follows that
there exist 2 £y and i € B such that

A

~ [ > 7 r@) + T (™8 nBy(my)<a, +

1 1
T+t =1 " =11 ’ PJT+7

For sufficiently large #o, f = ¢° implies that

t —_
zm VB, 1By (1) <a, +1r1/4,

Hence there exists i € B such that at an infinite number of times £ his mean payoff from
(FVB, nB) is less than a; + r'1/4, and thus £ €, V2, n5).
The following theorem is a consequence of 2.2. and 2.3.

Theorem. In a supergame with LM.E.R.’s, the set of payoffs of the summable strong
equilibria = the set of payoffs of the summable strong perfect equilibria = the set of
desirable payoffs.

Example and Comment

In matrix games, the desired payoffs are contained in the §-core, but the converse is
not necessarily true. Let us look at the following 3-person game, where each player has
two pure strategies, ¢; and b;. The payoff matrix is represented by two matrices, where
player 1 is the row player, player 2 is the column player, and player 3 chooses the
matrix.
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as bz as b2
a; (23 2: 2) (19 1, O) a, (O’ 0, 4) (17 13 3)
by [(1,1,3) | (0,0,4) (1,1,0) | (2,2,2)

\/bs

For every 1 <i<3,S; is the set of mixed strategies naturally identified with the in-

terval [0, 1], where the ch01ce p €10, 1] corresponds to the strategy p * a; + (1 —p)
. %). The payoff functions are the expected utilities. (2, 2, 2) is a payoff in the 8-

core since the only coalition with a possible profitable strategy deviating from
(@1, @2, a3) is {3}; but {1, 2} have a punishing strategy (1/2) * (@,,b2)+ (1/2) * (a2, b;)
which reduces 3’s expected payoff, whatever his strategy, to 1.5 <2.

However, (2, 2, 2) is not a desired payoff since forp €85,, g €S,, player 3 may
assure himself

max {2pq +3(1 —p)q +4(1—p)(1 —q),4pq +3p(1—q)+2(1 —p) (1 —q).

which is strictly greater than 2,
3. Strong Equilibrium with the O.T.E.R.

The O.T.E.R. contains the L.M.E.R., and thus from 2.2 the following proposition is
obtained.

Proposition 3.1: Let f € F be a strong summable equilibrium in a supergame with
O.T.E.R.’s. Then n(f) is a desired payoff.

With the O.T.E.R., the mean is not a good characterization of payoff sequences.
(Thus, for example, for all 4, b, ¢, where a < b, the sequence (b, ¢, c, . . .) is preferred
to(a, c, c,...), despite the fact that the means are the same.) Hence it is pertinent to
examine the strong stationary equilibria.

In continuation of Rubinstein [1979], where the strong Nash equilibria in a super-
game with O.T.E.R.’s were characterized, it might be though that if s €S has the
property that for all @ ¥ B C N either

1.NocB e C(SB ) exists such that forall i €EB

m (B, sV By > m(s).
or
2. There exists ¥V"2 such that for all & € C(S®) a player i € B can be found for
whom 7; (¢8, yV-By <, (s).
Then, there must exist a strong stationary equilibrium f such that 6 (f) = o.

)p a; + 1l-p)- b denotes the strategy “‘play a; with probability p, and b with proba-
bility (1 —p).”
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But consider the following 3-person game presented in extended form. For every
player, S; = R;, L'.}. The evaluation relations are according to the overtaking cri-
terion.

1
L, 2 3 R,
/\ R2 L3 /\
(1LY 04,0 (0,04) 04,0

(1,1,1) is not a stationary payoff of a strong equilibrium in the supergame, despite
the fact that for every S C {1,2,3}, either no deviation profitable to every player in
the supergame exists, or {1,2,3} — S can “retaliate”, punishing at least one of the
players in S.

This example, demonstrates the possibility of deviation by stages. An equilibrium
strategy must punish player 2 for his deviation R, as follows: every time 2 gains 4, 2
and 3 will play (R, , L3) at least three times; however, already after the first punishing
game, both 2 and 3 will have averaged more than 1. Thus the coalition {2,3} can plan
the following trick: 2 deviates; after being punished once, 3 plays alternatively L3, R3,
while 2 plays L, . This strategy is preferable for 2 and 3 (according to the overtaking
criterion) to a strategy with a constant flow of 1.

On the other hand, the following proposition may be proven in a similar way to
2.2.

Proposition 3.2. Let a be a pareto optimal payoff where forall ¥ D B D P thereis a
7” B egN-B , such that for all Be C(SB ), a player i € B can be found for whom

m (B, yN-B )<a;. I <K/’sare O.T.E.R.’s then there is a strong stationary equilibrium
such that 6(f) = . '

4. The Amnesty Dilemma

Consider the following two-person game: S; = {4;, b.} and m; are represented by
the matrix ’

a b,

a | (2,2) | (1,
b, | 40) | (1,1)
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The following interpretation of the game explains its name. The column player is
society, the row player is a citizen. When free, the citizen can behave well (¢, ) or com-
mit a crime (b, ). Society can jail him (b, ) or let him free (a; ). Commission of a crime
benefits the individual but damages society; punishing the criminal is damaging to
both.

From 3.3 it follows that (2,2) is the payoff of a strong (even stationary) equilibrium
in the supergame with O.T.E.R.’s. But:

Proposition 4.1. This supergame has no perfect equilibrium.
The following will first be proved.

Proposition 4.2. Let f be a strong perfect equilibrium in a supergame with O.T.E.R’s.
Letr(1),...,r(T) €S. Then there exists no 7 €S such that foralli EN

T (f(T+1) (A1), ...,r (1)) <m(r).

Proof. Suppose the propositiori is false. Writing o for f(T + 1) (r(1), ..., r(])), let
7 €S be a such that for all i €N, m;(0) <, (7).
Wite f =f,q),...r )

Define the following n-tuple of strategies: g()=r1.

Forall t>2,g. () (s(1), ..., s(t —1) =£,(1) (5, 5(2), . . ., s(t — 1)). Clearly
n(o(g) (1)) = n(r) >>n(0) =n(o(f) ()) and forall £ > 2,
10 @) (1)) = n(o(f) ().

Thus for all i, f <€ & contradicting the perfection of f.

Proof of 4.1. Suppose that f € F is a strong perfect equilibrium. From 4.2 there exist
nor(l),..., r(T)such that f,(T + 1) (r(1),...,r(T)) = b,. It follows that f, () =a,
for all ¢. :

Clearly f, (£) = b, for all ¢, otherwise perfection is contradicted.

Now the deviation of player 2, given by f, () = b, guarantees him a utility flow of
1, contradicting f being an equilibrium.

Intuitively, the situation is as follows: society and the citizen can agree to play
(a1, a2), with society threatening to punish the citizen by playing b, should he play b, .

But after the citizen indeed deviates and plays b, , society agrees to “forgive” him,
since it is in its own interest to do so. The original threat is not a deterrent.

This example, in my opinion, exposes the limitations of the concepts of solution
given in this paper. There is lacking a notion of “precedent*; if we are not to ignore
the player’s expectations, we have, for example, to introduce somehow, into player
2’s considerations the possible consequence of not punishing 1. I hope to treat this
subject in a forthcoming paper.

Example. The Prisoner’s Dilemma
In contrast to the Amnesty Dilemma, the Prisoner’s Dilemma has a strong perfect
equilibrium. ‘
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This game is described like the previous one, but with the following matrix:
a, b,

a; | (2,2) | (0,3)

by | 3,00 | (1,1)

Define the i-strategy at time ¢, f; (¢), and the “length of time i has to be punished
because of his record up to time r — 1, mi(t), by induction on #:

m,(1)=0

f; ) =q

1 if i is the only player for whom 5;(s — 1) # ¢; and
m; (t—1)(s(l),...,s(t—2))=0 forallj.

m; @ sQ),...,s¢—1))=y mlt— DGA),...,s¢—2)+1 if's;(r) ¥a; and
m(t—1)(s(1),...,s(z—2))>
max {0, m,(r — 1) (s(1), . . ., s(z — 2)) — 1} otherwi

b, if for the other player j, m; ) (s),...,s(—1)
O 6),. .., s@—1)=

a; otherwise.

The players are planning to play (a;, @, ) unless one of them deviates. If 2 deviates,
1 punishes him, by forcing (b,, a,). If 2 does not co-operate in his own punishment,
player 1 will increase the period of punishment. Clearly, in contrast to the previous
example, the punishing player profits from the punishing arrangement and he has no
motivation to forgive the deviant. It is easily verified that fis indeed a strong perfect
equilibrium.
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