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Problem 1

1. Consider a decision maker on the space X = [0,1] where t € X is interpreted as
the portion of the day he contributes to society.

(1) Assume that he has a strictly convex and continuous preference relation over X.
Show that he has a "single peak" preference relation, namely that there exists x* such
that for every x* <y < zorz <y < x* he strictly prefers y to z. Find a strictly convex
preference relation on this space which is not continuous.

(2) Assume that the domain of the decision maker’s choice function contains all sets
of the form B(w,-») = {x € X|x > w}, as well as of the form
B(w,<) =<{xe X |x<w}, wherew € [0,1]. Interpret these sets. Show that the
decision maker’s choice function induced from a strictly convex and continuous
preference relation is always well-defined and continuous in w.

Solution to Problem 1

(1) Since X is compact and > is continuous, there exists a =-maximal element in X; it
is also unique, since > is strictly convex and X is a convex set.

Let x* be the unique >-maximal element in X. Consider any z < y < x*. Ify = x*, then
by definition of x* we have y > z. If y < x*, we assume by contradiction that z > y.
Since also x* >y, by strictly convexity any element strictly between x and y is strictly
better than y, which implies y > y, a contradiction. So it must be that y > z. Similarly,
we can show that for every x* <y <z,y > z

Among preference relations that are convex but not continuous, consider the one
represented by the following utility function:



0 ifx <0.5;
u(x) = .
0.5-x, if0.5<x<1.

(2) These are the sets that require the agent to contribute at most/least a proportion
w of the day.

Note first that for all w € [0,1],a € {-,«}, there exists a >-maximal element on
B(w,a) because > is continuous and B(w,a) is compact; it is also unique, because > is
strictly convex and B(w,a) is a convex set. We can calculate C.(B(w,—) and C.(B(w,«)
as:

x*, ifw < x*;
w, ifw>x*

@@Wﬁﬂ—{

if w < x*;

X*, ifw > x*.

W,
Q&Mﬁ»{ :
These functions are clearly continuous in w.

Problem 2

Consider two types of decision makers:

Type A has in mind several criteria (-i )ies Where each >; is an ordering of the
elements in a finite set X. Whenever the agent chooses from a set A < X he is
satisfied with any element a such that for any other b € A there is some i (i probably
depends on b) for which a >; b.

Thus, for example, if he has one criterion in mind then the induced choice
correspondence picks the unique maximal element from each set ; if he has two in
mind, where one is the negation of the other, then the induced choice correspondence
is C(A) = A

(1) Show thatifa € C(A) N C(B), then a € C(A U B).

(2) Suggest another interesting property that the choice correspondence induced by
the above procedure always satisfies.

Type B has in mind a transitive asymmetric relation > with the interpretation that if
a > b then he will not choose b if a is available. He is described by the choice



correspondence C(A) = {x € Al thereisnoy € A such thaty > x}.
(3) Show that every type A agent can be described as a type B agent.
(4) Show that every type B agent can be described as a type A agent.

Solution to Problem 2

(1) Since a € C(A), we have Vb € A,b +# a,3i,a > b. Also, since a € C(B), we have
Vc € B,c # a,3di,a > c. But this directly implies that vd € AUB,d # a,3i,a >i d. Then
by definition, a € C(A U B).

(2) Following are two posisble properties:

Condition a. Consider any a € A c B. Suppose that a € C(B). We want to show
that a € C(A). Note that since a € C(B), we have Vb € B,b + a,3i,a >i b. Since A c B,
this directly implies that vb € A,b + a,3i,a > b, and therefore a € C(A).

Path independence. C(A) = C(C(A;) UC(A,)), for any A € X and any {A;,A,} that
is a partition of A. Consider any A and any of its partitions {A;,A,} and consider
a € C(A). WLOG a € A,. By condition a, we know that a € C(A,) and therefore
a e C(A;) UC(A). Since C(A) UC(A,) c A, again by condition a we have
a € C(C(A1) UC(Ay)). Therefore, C(A) < C(C(A1) UC(Ay)).

Conversely, consider any x ¢ C(A). Then 3y, s.t. y >; X, Vi. Note that for any partition
such that x,y are in the same set, say x,y € Aj, it must be that x ¢ C(A;), because y
dominates x in A, according to all criteria. Now consider some partition of A s.t. X,y are
not in the same set, say x € A,y € A,. In this case, ify € C(A,), then even if
x € C(A1), we know that x ¢ C(C(A;) UC(Ay)). Ify ¢ C(A;), then 3z € C(A;) s.t.

Z >i Y >i X, Vi. (Note that 9z, € A, s.t. z; > y,Vi. lIfz; ¢ C(A,), then 3z, s.t.

Z> >i Z1 >i Y, Vi. we continue until we find az € C(A,) s.t. z > y,Vi.) Then, again even
if x € C(A1), we know that x ¢ C(C(A;) U C(A2)). Therefore, in any case,

X ¢ C(C(A1) UC(A2)).

(3) Define x > y iff x > y, Vi. We denote by Ca the choice correspondence according
to {>i } and by Cg the choice correspondence according to >. That is,
Ca(A) =<{a € Alvb € A,b + a,3i,a > b} and Cg(A) = {a € A|Ab € A,b > a}. We want
to show that Ca(A) = Cg(A), VA € X.



Consider a € Ca(A). By the definition of Ca, Vb € A,b # a,3i,a >i b. By the definition
of >, we do not have b > a, Vb € A. Then, by definition of Cg, a € Cg(A).

Conversely, take any a € Cg(A). By definition of Cg, b € A,b > a. However, in that
case, the definition of >, it must be that Vb € A,b = a,3i,a >; b; otherwise there would
be some b € A,b > a, Vi, which implies b > a, a contradiction. However, this directly
corresponds to the definition of Ca and implies that a € Ca(A).

(4) For every type B agent, define {>; } to be the collection of complete orderings on
X that is extended from . By Problem 4 in PS1 we know that {>-; } is not empty, and
by Problem 5 in PS1, we know that {>-; } satisfies: Vx,y € X,x > y iff x >; y, Vi. By what
we have shown in (3), the choice correspondence defined by > (type B agent) is
exactly the same as the one defined by {>; } (type A agent), which is what needs to
be shown.

Problem 3

Define an "amount of money" to be any positive integer. Define a "wallet" to be a
collection of amounts of money. Denote the wallet with K amounts of money xi,..,xk
by [Xi,..,Xk]. Thus, for example, the wallet [3,3,4] with a total of 10 is identical to the
wallet [4,3,3] and is different than the wallet [3,4] which has a total of 7. Let X be the
set of all wallets. The following are two properties of preference relations over X :

Monotonicity:

(i) Adding an ammount of money to the wallet or increasing one of the amounts is
weakly improving.

(ii) Increasing all amounts is strictly improving.

Split aversion:

Combining two amounts of money is (at least weakly) improving (thus [7,3] is at
least as good as [4,3,3]).

(1) Let v be a function defined on the natural numbers satisfying (i) v(0) = 0, (ii) it is
strictly increasing and (iii) superadditivity (v(x +y) > v(x) + v(y) for all x,y). Show that
the function u([xi,...,Xk]) = Zk1,.kV(Xk) is a utility function which represents a
preference relation on X that satisifies monotonicity and split aversion.

(2) Give an example of a preference relation satisfying monotinicity but not split
aversion and an example of a preference relation satsifying split aversion but not



monotonicity.

(3) Define the notion that one preference relation is more split averse than the other.

(4) Find a preference relation (satisfying monotonicity and split aversion) which is
less split averse than any other split averse and monotonic preference relation.

(5) Show that the relation represented by the function u([xi,...,Xk]) = max<{Xi,..,Xx}
is more split averse than any preference relation of the type described in part (1).

Solution to Problem 3

(1) Monotonicity: Consider the wallets [x;,...,xx] and [Xi,...,Xk,Xk+1]. We have
U([X1,.. s XKk XKe1]) = U([X1,...,Xk]) +V(Xks1) > U([X1,...,Xx]).

Take any wallets [xi,...,Xk] and [yi,...,yk] s.t. yi > X, Vi with strict inequality for
some i. Then u([xi,...,Xk]) = ZL; v(yk) > Zszl V(Xk), because v is strictly increasing
and y; > x;, Vi with strict inequality for some i.

Split aversion: Consider the wallets [xi,...,xx] and [X1,..,Xi_1,Vi,VYi, Xi:1,..,Xk] where
Xi = Yi+Yi. We have:

U([X1, -5 XK]) = U(X 15 -5 Xict, Vi Yis Xists - -, XK]) = V(Xi) — (V(Yi) +V(y})) =0

where the inequality follows from the superadditivity of v.

(2) 1. Monotonic but not split averse: u([xi,...,Xk]) = min{Xi,...,Xk}.
2. Split averse but not monotonic: u([x,...,xx]) = —K (the more amounts there are
the worst off one is).

(3) We say >, is more split averse than >, if for any wallets x and an amount c,
X =1 (c) implies x >, (c).

(4) Consider the preference relation > on X represented by u([Xi,...,Xk]) = Zle Xk.
We claim that > is less split averse than any other monotonic and split averse
preference relation on X.

To see this, take any >' on X that is monotonic and split averse. Take any x € X
and a number c s.t. the cardinality of y is 1. We want to show that x >’ (c) implies
x = (c). Since ' is split averse (applied inductively), then (3, xk) ' X, by transitivity



(2, Xx) =" (¢) and by the monotonicity of =" we have _ xx > ¢ which implies x > c.

(5) Let = be the preference relation represented by u([xi,...,Xk]) = max{Xi,...,Xk}.
Let>' be any preference relation described in (1). We want to show that > is more
split averse than ' . To see this, take any wallet x and an amount c. We need to show
that x > [c] implies x >’ [c].

If x = [c], then max{x,...,Xk} > C. Since v is non-negative and strictly increasing, we
directly obtain 3 v(xk) > v(c), implying that x =" [c].



