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Problem 1
1. Consider a decision maker on the space X  0,1 where t ∈ X is interpreted as

the portion of the day he contributes to society.

(1) Assume that he has a strictly convex and continuous preference relation over X.

Show that he has a "single peak" preference relation, namely that there exists x∗ such

that for every x∗ ≤ y  z or z  y ≤ x∗ he strictly prefers y to z. Find a strictly convex

preference relation on this space which is not continuous.

(2) Assume that the domain of the decision maker’s choice function contains all sets

of the form Bw,→  x ∈ X | x ≥ w, as well as of the form

Bw,←  x ∈ X | x ≤ w, where w ∈ 0,1. Interpret these sets. Show that the

decision maker’s choice function induced from a strictly convex and continuous

preference relation is always well-defined and continuous in w.

Solution to Problem 1
(1) Since X is compact and  is continuous, there exists a -maximal element in X; it

is also unique, since  is strictly convex and X is a convex set.

Let x∗ be the unique -maximal element in X. Consider any z  y ≤ x∗. If y  x∗, then

by definition of x∗ we have y  z. If y  x∗, we assume by contradiction that z  y.

Since also x∗  y, by strictly convexity any element strictly between x and y is strictly

better than y, which implies y  y, a contradiction. So it must be that y  z. Similarly,

we can show that for every x∗ ≤ y  z, y  z.

Among preference relations that are convex but not continuous, consider the one

represented by the following utility function:



ux 
0 if x ≤ 0.5;

0.5 − x, if 0.5  x ≤ 1.

(2) These are the sets that require the agent to contribute at most/least a proportion

w of the day.

Note first that for all w ∈ 0,1,a ∈ →,←, there exists a -maximal element on

Bw,a because  is continuous and Bw,a is compact; it is also unique, because  is

strictly convex and Bw,a is a convex set. We can calculate CBw,→ and CBw,←

as:

CBw,→ 
x∗, if w ≤ x∗;

w, if w  x∗.

CBw,← 
w, if w ≤ x∗;

x∗, if w  x∗.

These functions are clearly continuous in w.

Problem 2
Consider two types of decision makers:

Type A has in mind several criteria i i∈I where each i is an ordering of the

elements in a finite set X. Whenever the agent chooses from a set A ⊆ X he is

satisfied with any element a such that for any other b ∈ A there is some i (i probably

depends on b) for which a i b.

Thus, for example, if he has one criterion in mind then the induced choice

correspondence picks the unique maximal element from each set ; if he has two in

mind, where one is the negation of the other, then the induced choice correspondence

is CA ≡ A.

(1) Show that if a ∈ CA ∩ CB, then a ∈ CA  B.

(2) Suggest another interesting property that the choice correspondence induced by

the above procedure always satisfies.

Type B has in mind a transitive asymmetric relation  with the interpretation that if

a  b then he will not choose b if a is available. He is described by the choice



correspondence CA  x ∈ A| there is no y ∈ A such that y  x.

(3) Show that every type A agent can be described as a type B agent.

(4) Show that every type B agent can be described as a type A agent.

Solution to Problem 2
(1) Since a ∈ CA, we have ∀b ∈ A,b ≠ a,∃i,a i b. Also, since a ∈ CB, we have

∀c ∈ B,c ≠ a,∃i,a i c. But this directly implies that ∀d ∈ A  B,d ≠ a,∃i,a i d. Then

by definition, a ∈ CA  B.

(2) Following are two posisble properties:

Condition . Consider any a ∈ A ⊂ B. Suppose that a ∈ CB. We want to show

that a ∈ CA. Note that since a ∈ CB, we have ∀b ∈ B,b ≠ a,∃i,a i b. Since A ⊂ B,

this directly implies that ∀b ∈ A,b ≠ a,∃i,a i b, and therefore a ∈ CA.

Path independence. CA  CCA1  CA2, for any A ∈ X and any A1,A2 that

is a partition of A. Consider any A and any of its partitions A1,A2 and consider

a ∈ CA. WLOG a ∈ A1. By condition , we know that a ∈ CA1 and therefore

a ∈ CA1  CA2. Since CA1  CA2 ⊂ A, again by condition  we have

a ∈ CCA1  CA2. Therefore, CA ⊆ CCA1  CA2.

Conversely, consider any x ∉ CA. Then ∃y, s.t. y i x,∀i. Note that for any partition

such that x,y are in the same set, say x,y ∈ A1, it must be that x ∉ CA1, because y

dominates x in A1 according to all criteria. Now consider some partition of A s.t. x,y are

not in the same set, say x ∈ A1,y ∈ A2. In this case, if y ∈ CA2, then even if

x ∈ CA1, we know that x ∉ CCA1  CA2. If y ∉ CA2, then ∃z ∈ CA2 s.t.

z i y i x,∀i. (Note that ∃z1 ∈ A2 s.t. z1 i y,∀i. If z1 ∉ CA2, then ∃z2 s.t.

z2 i z1 i y,∀i. we continue until we find a z ∈ CA2 s.t. z i y,∀i.) Then, again even

if x ∈ CA1, we know that x ∉ CCA1  CA2. Therefore, in any case,

x ∉ CCA1  CA2.

(3) Define x  y iff x i y,∀i. We denote by CA the choice correspondence according

to i  and by CB the choice correspondence according to . That is,

CAA  a ∈ A|∀b ∈ A,b ≠ a,∃i,a i b and CBA  a ∈ A|∄b ∈ A,b  a. We want

to show that CAA  CBA,∀A ∈ X.



Consider a ∈ CAA. By the definition of CA, ∀b ∈ A,b ≠ a,∃i,a i b. By the definition

of , we do not have b  a,∀b ∈ A. Then, by definition of CB, a ∈ CBA.

Conversely, take any a ∈ CBA. By definition of CB, ∄b ∈ A,b  a. However, in that

case, the definition of , it must be that ∀b ∈ A,b ≠ a,∃i,a i b; otherwise there would

be some b ∈ A,b i a,∀i, which implies b  a, a contradiction. However, this directly

corresponds to the definition of CA and implies that a ∈ CAA.

(4) For every type B agent, define i  to be the collection of complete orderings on

X that is extended from . By Problem 4 in PS1 we know that i  is not empty, and

by Problem 5 in PS1, we know that i  satisfies: ∀x,y ∈ X,x  y iff x i y,∀i. By what

we have shown in (3), the choice correspondence defined by  (type B agent) is

exactly the same as the one defined by i  (type A agent), which is what needs to

be shown.

Problem 3

Define an "amount of money" to be any positive integer. Define a "wallet" to be a

collection of amounts of money. Denote the wallet with K amounts of money x1, . . ,xK

by x1, . . ,xK. Thus, for example, the wallet [3,3,4] with a total of 10 is identical to the

wallet [4,3,3] and is different than the wallet [3,4] which has a total of 7. Let X be the

set of all wallets. The following are two properties of preference relations over X :

Monotonicity:

(i) Adding an ammount of money to the wallet or increasing one of the amounts is

weakly improving.

(ii) Increasing all amounts is strictly improving.

Split aversion:

Combining two amounts of money is (at least weakly) improving (thus [7,3] is at

least as good as [4,3,3]).

(1) Let v be a function defined on the natural numbers satisfying (i) v0  0, (ii) it is

strictly increasing and (iii) superadditivity (vx  y ≥ vx  vy for all x,y). Show that

the function ux1, . . . ,xK  k1,,.,Kvxk is a utility function which represents a

preference relation on X that satisifies monotonicity and split aversion.

(2) Give an example of a preference relation satisfying monotinicity but not split

aversion and an example of a preference relation satsifying split aversion but not



monotonicity.

(3) Define the notion that one preference relation is more split averse than the other.

(4) Find a preference relation (satisfying monotonicity and split aversion) which is

less split averse than any other split averse and monotonic preference relation.

(5) Show that the relation represented by the function ux1, . . . ,xK  maxx1, . . ,xK

is more split averse than any preference relation of the type described in part (1).

Solution to Problem 3
(1) Monotonicity: Consider the wallets x1, . . . ,xK and x1, . . . ,xK,xK1. We have

ux1, . . . ,xK,xK1  ux1, . . . ,xK  vxK1 ≥ ux1, . . . ,xK.

Take any wallets x1, . . . ,xK and y1, . . . ,yK s.t. yi ≥ xi,∀i with strict inequality for

some i. Then ux1, . . . ,xK  ∑k1
K vyk  ∑k1

K vxk, because v is strictly increasing

and yi ≥ xi,∀i with strict inequality for some i.

Split aversion: Consider the wallets x1, . . . ,xK and x1, . . ,xi−1,yi,yi
′,xi1, . . ,xK where

xi  yi  yi
′. We have:

ux1, . . . ,xK − ux1, . . ,xi−1,yi,yi
′,xi1, . . ,xK  vxi − vyi  vyi

′ ≥ 0

where the inequality follows from the superadditivity of v.

(2) 1. Monotonic but not split averse: ux1, . . . ,xK  minx1, . . . ,xK.

2. Split averse but not monotonic: ux1, . . . ,xK  −K (the more amounts there are

the worst off one is).

(3) We say 1 is more split averse than 2 if for any wallets x and an amount c,

x 1 c implies x 2 c.

(4) Consider the preference relation  on X represented by ux1, . . . ,xK  ∑k1
K xk.

We claim that  is less split averse than any other monotonic and split averse

preference relation on X.

To see this, take any ′ on X that is monotonic and split averse. Take any x ∈ X

and a number c s.t. the cardinality of y is 1. We want to show that x ′ c implies

x  c. Since ′ is split averse (applied inductively), then ∑k
xk ′ x, by transitivity



∑k
xk ′ c and by the monotonicity of ′ we have∑k

xk ≥ c which implies x  c.

(5) Let  be the preference relation represented by ux1, . . . ,xK  maxx1, . . . ,xK.

Let ′ be any preference relation described in (1). We want to show that  is more

split averse than ′ . To see this, take any wallet x and an amount c. We need to show

that x  c implies x ′ c.

If x  c, then maxx1, . . . ,xK ≥ c. Since v is non-negative and strictly increasing, we

directly obtain∑k
vxk ≥ vc, implying that x ′ c.


