A draft of "solution":

An exam: Microeconomics for Phd, NYU FALL 2015 22 october 2015 Ariel Rubinstein Document by Dong Wei and Ariel Rubinstein

Problem 1

1. Consider a decision maker on the space X = [0, 1] where $t \in X$ is interpreted as the portion of the day he contributes to society.

(1) Assume that he has a strictly convex and continuous preference relation over *X*. Show that he has a "single peak" preference relation, namely that there exists x^* such that for every $x^* \le y < z$ or $z < y \le x^*$ he strictly prefers *y* to *z*. Find a strictly convex preference relation on this space which is not continuous.

(2) Assume that the domain of the decision maker's choice function contains all sets of the form $B(w, \rightarrow) = \{x \in X \mid x \ge w\}$, as well as of the form $B(w, \leftarrow) = \{x \in X \mid x \le w\}$, where $w \in [0, 1]$. Interpret these sets. Show that the decision maker's choice function induced from a strictly convex and continuous preference relation is always well-defined and continuous in *w*.

Solution to Problem 1

(1) Since *X* is compact and \succeq is continuous, there exists a \succeq -maximal element in *X*; it is also unique, since \succeq is strictly convex and *X* is a convex set.

Let x^* be the unique \geq -maximal element in X. Consider any $z < y \le x^*$. If $y = x^*$, then by definition of x^* we have $y \succ z$. If $y < x^*$, we assume by contradiction that $z \ge y$. Since also $x^* \ge y$, by strictly convexity any element strictly between x and y is strictly better than y, which implies $y \succ y$, a contradiction. So it must be that $y \succ z$. Similarly, we can show that for every $x^* \le y < z$, $y \succ z$.

Among preference relations that are convex but not continuous, consider the one represented by the following utility function:

$$u(x) = \begin{cases} 0 & \text{if } x \le 0.5; \\ 0.5 - x, & \text{if } 0.5 < x \le 1. \end{cases}$$

(2) These are the sets that require the agent to contribute at most/least a proportion w of the day.

Note first that for all $w \in [0,1], a \in \{ \rightarrow, \leftarrow \}$, there exists a \succeq -maximal element on B(w,a) because \succeq is continuous and B(w,a) is compact; it is also unique, because \succeq is strictly convex and B(w,a) is a convex set. We can calculate $C_{\succeq}(B(w, \rightarrow) \text{ and } C_{\succeq}(B(w, \leftarrow) \text{ as:})$

$$C_{\succeq}(B(w, \rightarrow)) = \begin{cases} x^*, & \text{if } w \le x^*; \\ w, & \text{if } w > x^*. \end{cases}$$
$$C_{\succeq}(B(w, \leftarrow)) = \begin{cases} w, & \text{if } w \le x^*; \\ x^*, & \text{if } w > x^*. \end{cases}$$

These functions are clearly continuous in *w*.

Problem 2

Consider two types of decision makers:

Type A has in mind several criteria (\succ_i)_{*i*\in*I*} where each \succ_i is an ordering of the elements in a finite set *X*. Whenever the agent chooses from a set $A \subseteq X$ he is satisfied with any element *a* such that for any other $b \in A$ there is some *i* (*i* probably depends on *b*) for which $a \succ_i b$.

Thus, for example, if he has one criterion in mind then the induced choice correspondence picks the unique maximal element from each set ; if he has two in mind, where one is the negation of the other, then the induced choice correspondence is C(A) = A.

(1) Show that if $a \in C(A) \cap C(B)$, then $a \in C(A \cup B)$.

(2) Suggest another interesting property that the choice correspondence induced by the above procedure always satisfies.

Type B has in mind a transitive asymmetric relation \succ with the interpretation that if $a \succ b$ then he will not choose *b* if *a* is available. He is described by the choice

correspondence $C(A) = \{x \in A | \text{ there is no } y \in A \text{ such that } y \succ x\}.$

(3) Show that every type A agent can be described as a type B agent.

(4) Show that every type B agent can be described as a type A agent.

Solution to Problem 2

(1) Since $a \in C(A)$, we have $\forall b \in A, b \neq a, \exists i, a \succ_i b$. Also, since $a \in C(B)$, we have $\forall c \in B, c \neq a, \exists i, a \succ_i c$. But this directly implies that $\forall d \in A \cup B, d \neq a, \exists i, a \succ_i d$. Then by definition, $a \in C(A \cup B)$.

(2) Following are two posisble properties:

Condition *a*. Consider any $a \in A \subset B$. Suppose that $a \in C(B)$. We want to show that $a \in C(A)$. Note that since $a \in C(B)$, we have $\forall b \in B, b \neq a, \exists i, a \succ_i b$. Since $A \subset B$, this directly implies that $\forall b \in A, b \neq a, \exists i, a \succ_i b$, and therefore $a \in C(A)$.

Path independence. $C(A) = C(C(A_1) \cup C(A_2))$, for any $A \in X$ and any $\{A_1, A_2\}$ that is a partition of A. Consider any A and any of its partitions $\{A_1, A_2\}$ and consider $a \in C(A)$. WLOG $a \in A_1$. By condition α , we know that $a \in C(A_1)$ and therefore $a \in C(A_1) \cup C(A_2)$. Since $C(A_1) \cup C(A_2) \subset A$, again by condition α we have $a \in C(C(A_1) \cup C(A_2))$. Therefore, $C(A) \subseteq C(C(A_1) \cup C(A_2))$.

Conversely, consider any $x \notin C(A)$. Then $\exists y, \text{ s.t. } y \succ_i x, \forall i$. Note that for any partition such that x, y are in the same set, say $x, y \in A_1$, it must be that $x \notin C(A_1)$, because ydominates x in A_1 according to all criteria. Now consider some partition of A s.t. x, y are not in the same set, say $x \in A_1, y \in A_2$. In this case, if $y \in C(A_2)$, then even if $x \in C(A_1)$, we know that $x \notin C(C(A_1) \cup C(A_2))$. If $y \notin C(A_2)$, then $\exists z \in C(A_2)$ s.t. $z \succ_i y \succ_i x, \forall i$. (Note that $\exists z_1 \in A_2$ s.t. $z_1 \succ_i y, \forall i$. If $z_1 \notin C(A_2)$, then $\exists z_2$ s.t. $z_2 \succ_i z_1 \succ_i y, \forall i$. we continue until we find a $z \in C(A_2)$ s.t. $z \succ_i y, \forall i$.) Then, again even if $x \in C(A_1)$, we know that $x \notin C(C(A_1) \cup C(A_2))$. Therefore, in any case, $x \notin C(C(A_1) \cup C(A_2))$.

(3) Define $x \succ y$ iff $x \succ_i y$, $\forall i$. We denote by C_A the choice correspondence according to $\{\succ_i\}$ and by C_B the choice correspondence according to \succ . That is, $C_A(A) = \{a \in A | \forall b \in A, b \neq a, \exists i, a \succ_i b\}$ and $C_B(A) = \{a \in A | \nexists b \in A, b \succ a\}$. We want to show that $C_A(A) = C_B(A), \forall A \in X$. Consider $a \in C_A(A)$. By the definition of C_A , $\forall b \in A, b \neq a, \exists i, a \succ_i b$. By the definition of \succ , we do not have $b \succ a, \forall b \in A$. Then, by definition of $C_B, a \in C_B(A)$.

Conversely, take any $a \in C_B(A)$. By definition of C_B , $\nexists b \in A, b \succ a$. However, in that case, the definition of \succ , it must be that $\forall b \in A, b \neq a, \exists i, a \succ_i b$; otherwise there would be some $b \in A, b \succ_i a, \forall i$, which implies $b \succ a$, a contradiction. However, this directly corresponds to the definition of C_A and implies that $a \in C_A(A)$.

(4) For every type B agent, define $\{\succ_i\}$ to be the collection of complete orderings on *X* that is extended from \succ . By Problem 4 in PS1 we know that $\{\succ_i\}$ is not empty, and by Problem 5 in PS1, we know that $\{\succ_i\}$ satisfies: $\forall x, y \in X, x \succ y$ iff $x \succ_i y, \forall i$. By what we have shown in (3), the choice correspondence defined by \succ (type B agent) is exactly the same as the one defined by $\{\succ_i\}$ (type A agent), which is what needs to be shown.

Problem 3

Define an "amount of money" to be any positive integer. Define a "wallet" to be a collection of amounts of money. Denote the wallet with *K* amounts of money $x_1, ..., x_K$ by $[x_1, ..., x_K]$. Thus, for example, the wallet [3,3,4] with a total of 10 is identical to the wallet [4,3,3] and is different than the wallet [3,4] which has a total of 7. Let *X* be the set of all wallets. The following are two properties of preference relations over *X* :

Monotonicity:

(i) Adding an ammount of money to the wallet or increasing one of the amounts is weakly improving.

(ii) Increasing all amounts is strictly improving.

Split aversion:

Combining two amounts of money is (at least weakly) improving (thus [7,3] is at least as good as [4,3,3]).

(1) Let *v* be a function defined on the natural numbers satisfying (i) v(0) = 0, (ii) it is strictly increasing and (iii) superadditivity ($v(x + y) \ge v(x) + v(y)$ for all *x*, *y*). Show that the function $u([x_1, ..., x_K]) = \sum_{k=1,..,K} v(x_k)$ is a utility function which represents a preference relation on *X* that satisifies monotonicity and split aversion.

(2) Give an example of a preference relation satisfying monotinicity but not split aversion and an example of a preference relation satisfying split aversion but not monotonicity.

(3) Define the notion that one preference relation is more split averse than the other.

(4) Find a preference relation (satisfying monotonicity and split aversion) which is less split averse than any other split averse and monotonic preference relation.

(5) Show that the relation represented by the function $u([x_1,...,x_K]) = \max\{x_1,...,x_K\}$ is more split averse than any preference relation of the type described in part (1).

Solution to Problem 3

(1) Monotonicity: Consider the wallets $[x_1, ..., x_K]$ and $[x_1, ..., x_K, x_{K+1}]$. We have $u([x_1, ..., x_K, x_{K+1}]) = u([x_1, ..., x_K]) + v(x_{K+1}) \ge u([x_1, ..., x_K]).$

Take any wallets $[x_1, ..., x_K]$ and $[y_1, ..., y_K]$ s.t. $y_i \ge x_i$, $\forall i$ with strict inequality for some *i*. Then $u([x_1, ..., x_K]) = \sum_{k=1}^{K} v(y_k) > \sum_{k=1}^{K} v(x_k)$, because *v* is strictly increasing and $y_i \ge x_i$, $\forall i$ with strict inequality for some *i*.

Split aversion: Consider the wallets $[x_1, ..., x_K]$ and $[x_1, ..., x_{i-1}, y_i, y'_i, x_{i+1}, ..., x_K]$ where $x_i = y_i + y'_i$. We have:

 $u([x_1,...,x_K]) - u([x_1,...,x_{i-1},y_i,y'_i,x_{i+1},...,x_K]) = v(x_i) - (v(y_i) + v(y'_i)) \geq 0$

where the inequality follows from the superadditivity of v.

(2) 1. Monotonic but not split averse: $u([x_1,...,x_K]) = \min\{x_1,...,x_K\}$.

2. Split averse but not monotonic: $u([x_1,...,x_K]) = -K$ (the more amounts there are the worst off one is).

(3) We say \geq_1 is more split averse than \geq_2 if for any wallets x and an amount c, $x \geq_1 (c)$ implies $x \geq_2 (c)$.

(4) Consider the preference relation \succeq on *X* represented by $u([x_1,...,x_K]) = \sum_{k=1}^{K} x_k$. We claim that \succeq is less split averse than any other monotonic and split averse preference relation on *X*.

To see this, take any \succeq' on *X* that is monotonic and split averse. Take any $x \in X$ and a number *c* s.t. the cardinality of *y* is 1. We want to show that $x \succeq'(c)$ implies $x \succeq (c)$. Since \succeq' is split averse (applied inductively), then $(\sum_k x_k) \succeq' x$, by transitivity $(\sum_k x_k) \geq' (c)$ and by the monotonicity of \geq' we have $\sum_k x_k \geq c$ which implies $x \geq c$.

(5) Let \succeq be the preference relation represented by $u([x_1, ..., x_K]) = \max\{x_1, ..., x_K\}$. Let \succeq' be any preference relation described in (1). We want to show that \succeq is more split averse than \succeq' . To see this, take any wallet *x* and an amount *c*. We need to show that $x \succeq [c]$ implies $x \succeq' [c]$.

If $x \geq [c]$, then max $\{x_1, \ldots, x_K\} \geq c$. Since *v* is non-negative and strictly increasing, we directly obtain $\sum_k v(x_k) \geq v(c)$, implying that $x \geq c$.