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Problem 1
1. Consider a decision maker on the space X  0,1 where t ∈ X is interpreted as

the portion of the day he contributes to society.

(1) Assume that he has a strictly convex and continuous preference relation over X.

Show that he has a "single peak" preference relation, namely that there exists x∗ such

that for every x∗ ≤ y  z or z  y ≤ x∗ he strictly prefers y to z. Find a strictly convex

preference relation on this space which is not continuous.

(2) Assume that the domain of the decision maker’s choice function contains all sets

of the form Bw,→  x ∈ X | x ≥ w, as well as of the form

Bw,←  x ∈ X | x ≤ w, where w ∈ 0,1. Interpret these sets. Show that the

decision maker’s choice function induced from a strictly convex and continuous

preference relation is always well-defined and continuous in w.

Solution to Problem 1
(1) Since X is compact and  is continuous, there exists a -maximal element in X; it

is also unique, since  is strictly convex and X is a convex set.

Let x∗ be the unique -maximal element in X. Consider any z  y ≤ x∗. If y  x∗, then

by definition of x∗ we have y  z. If y  x∗, we assume by contradiction that z  y.

Since also x∗  y, by strictly convexity any element strictly between x and y is strictly

better than y, which implies y  y, a contradiction. So it must be that y  z. Similarly,

we can show that for every x∗ ≤ y  z, y  z.

Among preference relations that are convex but not continuous, consider the one

represented by the following utility function:



ux 
0 if x ≤ 0.5;

0.5 − x, if 0.5  x ≤ 1.

(2) These are the sets that require the agent to contribute at most/least a proportion

w of the day.

Note first that for all w ∈ 0,1,a ∈ →,←, there exists a -maximal element on

Bw,a because  is continuous and Bw,a is compact; it is also unique, because  is

strictly convex and Bw,a is a convex set. We can calculate CBw,→ and CBw,←

as:

CBw,→ 
x∗, if w ≤ x∗;

w, if w  x∗.

CBw,← 
w, if w ≤ x∗;

x∗, if w  x∗.

These functions are clearly continuous in w.

Problem 2
Consider two types of decision makers:

Type A has in mind several criteria i i∈I where each i is an ordering of the

elements in a finite set X. Whenever the agent chooses from a set A ⊆ X he is

satisfied with any element a such that for any other b ∈ A there is some i (i probably

depends on b) for which a i b.

Thus, for example, if he has one criterion in mind then the induced choice

correspondence picks the unique maximal element from each set ; if he has two in

mind, where one is the negation of the other, then the induced choice correspondence

is CA ≡ A.

(1) Show that if a ∈ CA ∩ CB, then a ∈ CA  B.

(2) Suggest another interesting property that the choice correspondence induced by

the above procedure always satisfies.

Type B has in mind a transitive asymmetric relation  with the interpretation that if

a  b then he will not choose b if a is available. He is described by the choice



correspondence CA  x ∈ A| there is no y ∈ A such that y  x.

(3) Show that every type A agent can be described as a type B agent.

(4) Show that every type B agent can be described as a type A agent.

Solution to Problem 2
(1) Since a ∈ CA, we have ∀b ∈ A,b ≠ a,∃i,a i b. Also, since a ∈ CB, we have

∀c ∈ B,c ≠ a,∃i,a i c. But this directly implies that ∀d ∈ A  B,d ≠ a,∃i,a i d. Then

by definition, a ∈ CA  B.

(2) Following are two posisble properties:

Condition . Consider any a ∈ A ⊂ B. Suppose that a ∈ CB. We want to show

that a ∈ CA. Note that since a ∈ CB, we have ∀b ∈ B,b ≠ a,∃i,a i b. Since A ⊂ B,

this directly implies that ∀b ∈ A,b ≠ a,∃i,a i b, and therefore a ∈ CA.

Path independence. CA  CCA1  CA2, for any A ∈ X and any A1,A2 that

is a partition of A. Consider any A and any of its partitions A1,A2 and consider

a ∈ CA. WLOG a ∈ A1. By condition , we know that a ∈ CA1 and therefore

a ∈ CA1  CA2. Since CA1  CA2 ⊂ A, again by condition  we have

a ∈ CCA1  CA2. Therefore, CA ⊆ CCA1  CA2.

Conversely, consider any x ∉ CA. Then ∃y, s.t. y i x,∀i. Note that for any partition

such that x,y are in the same set, say x,y ∈ A1, it must be that x ∉ CA1, because y

dominates x in A1 according to all criteria. Now consider some partition of A s.t. x,y are

not in the same set, say x ∈ A1,y ∈ A2. In this case, if y ∈ CA2, then even if

x ∈ CA1, we know that x ∉ CCA1  CA2. If y ∉ CA2, then ∃z ∈ CA2 s.t.

z i y i x,∀i. (Note that ∃z1 ∈ A2 s.t. z1 i y,∀i. If z1 ∉ CA2, then ∃z2 s.t.

z2 i z1 i y,∀i. we continue until we find a z ∈ CA2 s.t. z i y,∀i.) Then, again even

if x ∈ CA1, we know that x ∉ CCA1  CA2. Therefore, in any case,

x ∉ CCA1  CA2.

(3) Define x  y iff x i y,∀i. We denote by CA the choice correspondence according

to i  and by CB the choice correspondence according to . That is,

CAA  a ∈ A|∀b ∈ A,b ≠ a,∃i,a i b and CBA  a ∈ A|∄b ∈ A,b  a. We want

to show that CAA  CBA,∀A ∈ X.



Consider a ∈ CAA. By the definition of CA, ∀b ∈ A,b ≠ a,∃i,a i b. By the definition

of , we do not have b  a,∀b ∈ A. Then, by definition of CB, a ∈ CBA.

Conversely, take any a ∈ CBA. By definition of CB, ∄b ∈ A,b  a. However, in that

case, the definition of , it must be that ∀b ∈ A,b ≠ a,∃i,a i b; otherwise there would

be some b ∈ A,b i a,∀i, which implies b  a, a contradiction. However, this directly

corresponds to the definition of CA and implies that a ∈ CAA.

(4) For every type B agent, define i  to be the collection of complete orderings on

X that is extended from . By Problem 4 in PS1 we know that i  is not empty, and

by Problem 5 in PS1, we know that i  satisfies: ∀x,y ∈ X,x  y iff x i y,∀i. By what

we have shown in (3), the choice correspondence defined by  (type B agent) is

exactly the same as the one defined by i  (type A agent), which is what needs to

be shown.

Problem 3

Define an "amount of money" to be any positive integer. Define a "wallet" to be a

collection of amounts of money. Denote the wallet with K amounts of money x1, . . ,xK

by x1, . . ,xK. Thus, for example, the wallet [3,3,4] with a total of 10 is identical to the

wallet [4,3,3] and is different than the wallet [3,4] which has a total of 7. Let X be the

set of all wallets. The following are two properties of preference relations over X :

Monotonicity:

(i) Adding an ammount of money to the wallet or increasing one of the amounts is

weakly improving.

(ii) Increasing all amounts is strictly improving.

Split aversion:

Combining two amounts of money is (at least weakly) improving (thus [7,3] is at

least as good as [4,3,3]).

(1) Let v be a function defined on the natural numbers satisfying (i) v0  0, (ii) it is

strictly increasing and (iii) superadditivity (vx  y ≥ vx  vy for all x,y). Show that

the function ux1, . . . ,xK  k1,,.,Kvxk is a utility function which represents a

preference relation on X that satisifies monotonicity and split aversion.

(2) Give an example of a preference relation satisfying monotinicity but not split

aversion and an example of a preference relation satsifying split aversion but not



monotonicity.

(3) Define the notion that one preference relation is more split averse than the other.

(4) Find a preference relation (satisfying monotonicity and split aversion) which is

less split averse than any other split averse and monotonic preference relation.

(5) Show that the relation represented by the function ux1, . . . ,xK  maxx1, . . ,xK

is more split averse than any preference relation of the type described in part (1).

Solution to Problem 3
(1) Monotonicity: Consider the wallets x1, . . . ,xK and x1, . . . ,xK,xK1. We have

ux1, . . . ,xK,xK1  ux1, . . . ,xK  vxK1 ≥ ux1, . . . ,xK.

Take any wallets x1, . . . ,xK and y1, . . . ,yK s.t. yi ≥ xi,∀i with strict inequality for

some i. Then ux1, . . . ,xK  ∑k1
K vyk  ∑k1

K vxk, because v is strictly increasing

and yi ≥ xi,∀i with strict inequality for some i.

Split aversion: Consider the wallets x1, . . . ,xK and x1, . . ,xi−1,yi,yi
′,xi1, . . ,xK where

xi  yi  yi
′. We have:

ux1, . . . ,xK − ux1, . . ,xi−1,yi,yi
′,xi1, . . ,xK  vxi − vyi  vyi

′ ≥ 0

where the inequality follows from the superadditivity of v.

(2) 1. Monotonic but not split averse: ux1, . . . ,xK  minx1, . . . ,xK.

2. Split averse but not monotonic: ux1, . . . ,xK  −K (the more amounts there are

the worst off one is).

(3) We say 1 is more split averse than 2 if for any wallets x and an amount c,

x 1 c implies x 2 c.

(4) Consider the preference relation  on X represented by ux1, . . . ,xK  ∑k1
K xk.

We claim that  is less split averse than any other monotonic and split averse

preference relation on X.

To see this, take any ′ on X that is monotonic and split averse. Take any x ∈ X

and a number c s.t. the cardinality of y is 1. We want to show that x ′ c implies

x  c. Since ′ is split averse (applied inductively), then ∑k
xk ′ x, by transitivity



∑k
xk ′ c and by the monotonicity of ′ we have∑k

xk ≥ c which implies x  c.

(5) Let  be the preference relation represented by ux1, . . . ,xK  maxx1, . . . ,xK.

Let ′ be any preference relation described in (1). We want to show that  is more

split averse than ′ . To see this, take any wallet x and an amount c. We need to show

that x  c implies x ′ c.

If x  c, then maxx1, . . . ,xK ≥ c. Since v is non-negative and strictly increasing, we

directly obtain∑k
vxk ≥ vc, implying that x ′ c.


