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Question 1

(0) The DM classifies the lottery outcomes in two categories: good (G) and
bad (B). He is optimistic about the good outcomes and pessimistic about
the bad outcomes. He evaluates a lottery p by the expected value where he
treats all the G (B) outcomes in the support of p as if they are the best
(worst) outcomes in the support of p.

(a) Independence: Consider Z = {1, 2, 3}, v(x) = x,B = {1} and G =
{2, 3}. Denote by u(p) the DM’s evaluation of the lottery p. The DM is
indifferent between the lottery p = [2] and the lottery q = 0.5[1] + 0.5[3].
However u(0.5p+ 0.5[3]) = 3 > u(0.5q + 0.5[3]) = u(0.25[1] + 0.75[3]) = 2.5,
which violates independence.

Continuity: [3] is better than [2] but for any ε > 0, ε[3]+(1-ε)2 is indif-
ferent to and not better than [3].

(b) If the support of two lotteries is the same, then the best G-outcome
and the worst B-outcome are the same in both lotteries p1 and p2. Hence,
the comparison between the lotteries is the same as the comparison of the
aggregate probabilities they assign to good outcomes. Now also supp(αp1 +
(1− α)p3) = supp(αp2 + (1− α)p3) = S. Thus,

αp1 + (1− α)p3 % αp2 + (1− α)p3 iff

[αp1 + (1− α)p3](S ∩G) ≥ [αp2 + (1− α)p3](S ∩G) iff

p1(supp(p1) ∩G) ≥ p2(supp(p1) ∩G) iff

p1 % p2

(c) Monotonicity: If [a] � [b] then if p and q are two lotteries such that
p(a) > q(a), p(b) < q(b) and p(x) = q(x) for any other x then p % q.
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The proof is quite trivial, as:
(i) the best outcome in supp(p)∩G is at least as good as the best outcome

in supp(q) ∩G .
(ii) The worst outcome in supp(p) ∩ B is at least as good as the worst

outcome in supp(q) ∩B.
(iii) p(supp(p) ∩G) ≥ q(supp(q) ∩G).

Question 2

Throughout the question, (a, b, c) is written instead of (a, b, c) ∈ B. Let
X = {x1, .., xn}.

(1) A betweenness relation which violates (A1) and satisfies the rest:

(xi, xj, xk) if i < j and i < k

(2) A betweenness relation which violates (A2) and satisfies the rest:
Let n = 4 and place the four points on a circle (x1, x2, x3, x4, x1). For any

three points one of them is naturally between the two other.
That is B contains (x1, x2, x3), (x2, x3, x4), (x3, x4, x1), (x4, x1, x2) as well

as their symmetric counterparts.
(It is easy to extend it to an example with more than 4 elements by

”placing the other elements on a line starting from x4).
(3) A betweenness relation which violates (A3) and satisfies the rest is

the ”indifference” relation:

B = {(a, b, c)|a, b, c are distinct}

(b) The proof is by induction on n, the cardinaility of X.
For n = 3. (A1) and (A3) imply that we can label the elements in X

such that B = {(a, b, c), (c, b, a)}.
Then set α(a) < α(b) < α(c) and we are done.

For the inductive step, suppose the statement holds for some n and let
us prove it for |X| = n+ 1.

Let y ∈ X. By the inductive hypothesis, there is a function α which
represnts the relation B on X−{y}. Enumerate X−{y} = {x1, .., xn} where
α(xi) < α(xj) iff i < j. So for each 1 ≤ i < j < k ≤ n, (xi, xj, xk) ∈ B.

Our goal is to extend the finction α by defining α(y) such that it will
reprsent B also for triples of elements involving y.

2



For each k ∈ {1, .., n − 1}, (A3) and (A1) imply that exactly one of the
following holds:

(xk, y, xk+1), (xk, xk+1, y), (y, xk, xk+1)

Suppose (xk, y, xk+1) for some k. Then by (A2) for all i < j ≤ k, we have
(xi, xj, y), for all k+1 ≤ i < j, we have (y, xi, xj) and for all i ≤ k, j ≥ k+1,
we have (xi, y, xj). Thus, setting α(y) between α(xk) and α(xk+1) works.

Claim: Suppose that (xk, y, xk+1) holds for no k. Then either (y, x1, x2)
or (xn−1, xn, y) is true but not both.

This is suffcient since if (y, x1, x2), then for all 1 ≤ k < l ≤ n−1, we have
(y, xk, xl). So setting α(y) < α(x1) works. Similarly, if (xn−1, xn, y), then
setting α(y) > α(xn) works.

Proof of Claim: The statements (y, x1, x2) and (xn−1, xn, y) cannot both
hold because by (A2), (y, x1, x2) implies (y, xn−1, xn) in contradiction with
(xn−1, xn, y).

It is left to argue that either (y, x1, x2) or (xn−1, xn, y). Suppose not.
Then (x1, x2, y) and (y, xn−1, xn). Thus, there must be a maximal k < n− 1
for which (xk, xk+1, y). Then (y, xk+1, xk+2).

To get a contradiction we will check the three possibilities for the relation
on the triplet xk, xk+2, y.

• If (xk, xk+2, y), then from (xk, xk+1, xk+2) and (A2), we have (xk+1, xk+2, y).
By (A3), this contradicts (y, xk+1, xk+2).

• If (y, xk, xk+2), then from (xk, xk+1, xk+2) and (A2), we have (y, xk, xk+1).
By (A3), this contradicts (xk, xk+1, y).

• If (xk, y, xk+2), then from (y, xk+1, xk+2) and (A2), we get (xk, y, xk+1):
a contradiction.

Question 3

(a) You can rationalise the demand function with the following preferences,
the indifference curves of which are drawn below.
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The part of the indifference curve above the diagonal is given by consul-
tant A’s indifference curve and the part below the diagonal is given by con-
sultant B’s indifference curve. Formally, for any bundle x, let (dA(x), dA(x))
be the unique point on the diagonal which satisfies (dA(x), dA(x)) ∼A x and
similarly for consultant B. Then preferences can be represented by a utility
function

u(x) =

{
dA(x) if x1 ≤ x2

dB(x) if x1 > x2

To argue these preferences are consistent with the demand function, con-
sider first p1 > 2p2. Then both consultants recommend spending the entire
budget on good 2. This is also the u-maximal bundle in the budget set as
depicted below.

The case p2 > 2p2 follows analogously. We are left with the case where
no good is more than twice expensive than the other. Then consultant A
recommends spending everything on good 1 and consultant B recommends
spending everything on good 2, so the demand function picks the intersection
point of the diagonal and the budget line. This is also the u-maximal bundle
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in the budget set.

(b) We will use the preferences from part (a) to rationalise the demand
function in the general case as well. Let (d, d) denote the intersection point
of the diagonal and the budget line.

Firstly, suppose p1
p2
≤ v1B(d,d)

v2B(d,d)
. In this case both consultants’ indifference

curves IA and IB are steeper than the budget line at (d, d). Therefore, the
consultants recommend points xA and xB below the diagonal. The demand
function picks xB as it is closer to the diagonal. Now the highest attainable
indifference curve for the consumer is the one which coincides with I ′B below
the diagonal. Hence, the preference-maximising bundle is xB, as required.

We proceed similarly if p1
p2
≥ v1A(d,d)

v2A(d,d)
.
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Finally, suppose
v1A(d,d)

v2A(d,d)
≤ p1

p2
≤ v1B(d,d)

v2B(d,d)
. Then A recommends xA below

the diagonal and B recommends xB above the diagonal. Thus, the demand
functions picks (d, d). This is also the preference-maximal bundle because
the highest attainable indifference curve consists of IA above the diagonal
and IB below the diagonal.
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