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SOLUTION

Question 1

A consumer operates in a world with K commodities. He has in mind a list of

consumption priorities, a sequence kn,qn where kn ∈ 1, . . . ,K is a commodity and qn is

a quantity. When facing a budget set p,w he purchases the goods according to the order

of priorities in the list, until his budget is exhausted. (In the case that his money is

exhausted during the n’th stage he purchases whatever proportion of the quantity qn that he

can afford).

(i) How does the demand for the k’th commodity responds to the pk, pj (j ≠ k) and w?

(ii) Suggest an increasing utility function which rationalizes the consumer’s behavior.

(iii) Using the utility function you suggested in (ii) prove the Roy equality for this

consumer at p,w where the consumer exhausts his entire budget while satisfying his n’th

goal.

Solution:

(i) Let yn be the bundle which gets the value 0 for all commodities besides kn and the

value qn for commodity kn.

Given a budget set p,w let L be minimum l for which∑n1
l pnqn  w. Then

xkp,w 
∑n1

L−1 yk
n if k ≠ kL

∑n1
L−1 yk

n 
w−∑n1

L−1
pknqn

pk if k  kL

In other words to demand is the highest feasible bundle on the line which connects the

bundles

0,y1,y1  y2,y1  y2  y3. . .

Increasing w weakly increases the demand to each of the commodities. Increasing each

of the prices (weakly) decreases the demand to each of the goods.

(ii) Define ux to be the largest number t for which∑n1
t yn  t − tyt1 ≤ x (where

the inequality is inequality of vectors and t is the greatest integer of t.) In other words,

ux is the number of tasks (could be 6.3) that can be fulfilled with the assets in x.



Clearly the consumer’s behavior is derived from the maximization of this utility

function.

(iii) The indirect utility function vp,w which is induced from this utility function is

the number of stages which could be obtained given the income w and the price vector p.

Assume that at p,w the consumer is in the midst of the n’th stage. Changing the price

of good k by a small  changes the expense of the k ′th commodity by xkp,w and thus

changes the stage of he can obtain by −xkp,w/qnpn

Thus, ∂v
∂pk
p,w  −xkp,w/qnpn .

A change in  in the wealth allows a change of /qnpn in his indirect utility and thus

Thus, ∂v
∂w p,w  1/qnpn . It follows that:

−
∂v
∂pk
p,w

∂v
∂w p,w

 xkp,w

Question 2

Consider a decision maker in the world of lotteries, with Z  R being monetary prizes.

The decision maker assigns a number vz to each amount of money z. The function v is

continuous and increasing. The decision maker evaluates each lottery p according to:

Up  maxvz|z ∈ suppp  1 − minvz|z ∈ suppp.

(a) Characterize the decision makers of this type who are "risk averse".

(b) Show that if two decision makers of this type, with   1/2, hold the functions v1

and v2 and v1 ∘ v2
−1 is concave, then decision maker 1 is more risk averse than decision

maker 2.

(c) Do at home: Assume that the two decision makers use   1/2. Is the concavity of

v1 ∘ v2
−1 a necessary condition for decision maker 1 to be more risk averse than decision

maker 2.

Solution:

(a) Assume 0   ≤ 1. Fix a,c such that a  c. For any  we can find a number

b ∈ a,c such that vc  1 − va  vb. Let  be a number such that

c  1 − a  b. Consider the lottery p which receives the value c with probability 

and the value a with probability 1 − . Then,

UαEp  vEp  vb  Uαp  vc  1 − va. Thus,  does not exhibit risk

aversion.



If   0, then whatever vz is the relation  is risk averse since always

U0p  minz∈supppvz ≤ vEp.

(b) Assume that p 1 c. Let v1M  maxv1z ∣ z ∈ suppp and

v1m  minv1z ∣ z ∈ suppp. Then, v1M  v1m/2 ≥ v1c. Since   v2 ∘ v1
−1

is convex, then

v2M  v2m/2  v1M  v1m/2 ≥ v1M  v1m/2 ≥ v1c  v2c

That is, p 2 c. 

Question 3 (Based on Rubinstein (1980))

An individual is comparing pairs of alternatives within a finite set X (|X|≥ 3). His

comparison yields unambiguous results, such that either x is evaluated to be better than y

(denoted x → y) or y is evaluated to be better than x (y → x). A ranking method assigns to

each such relation → (namely, complete, irreflexive and antisymmetric relation) a

preference relation  → over X. Consider the following axioms with respect to ranking

methods:

Neutrality: "the names of the alternatives are immaterial". (Formally, let σ be a

permutation of X and let σ→ be the relation defined by σxσ→σy iff x → y. Then,

x  →y iff σx  σ→σy.)

Monotonicity: if x  →y, then x  →′ y where →′ , differs from → only in the

existence of one alternative z such that z → x and x →′ z.

Independence: The ranking between any two alternatives depends only on the results of

comparisons that involve at least one of the two alternatives.

(i) Define N→x  |z|x → z| (the number of alternatives beaten by x). Explain why

the scoring method defined by x  →y if N→x ≥ N→y satisfies the three axioms.

(ii) For each of the properties, give an example of a ranking method which satsifies the

other two properties but not that one.

(iii) Prove that the above scoring methods is the only one that satisfies the three

properties.

(In the exam you can make do with a proof for a 4-element set X).

Answer:

(i) Neutrality: For any permutation  of X, x  y  x  y since the numbers

of victories for x and y in → are the same as for x and y accordingly in →′ .

Monotonicity: If x has at least as many points as y in →, then it will have strictly more



victories in →′ where it wins in one additional comparison (which it lost in →).

Independence: The comparison between x and y depends only on the comparisons

involving x and y.

(ii) The three axioms are independent.

(a) Consider a method that assigns to any → the same arbitrary fixed preference relation.

This ranking method satisfies Monotonicity and Independence but violates Neutrality.

(b) Consider the ranking method according to x  →y if N→x ≤ N→y. It satisfies

Neutrality and Independence but violates Monotonicity.

(c) Consider the ranking method defined by

x  →y if ∑
z∣x→z

N→z  1 ≥ ∑
z∣y→z

N→z  1

It satisfies Neutrality and Monotonicity but violates Independence.

(iii)

We will first prove first the following :

Lemma: If a ranking method  satisfies Neutrality and Independence and if

N→x  N→y, then x  →y.

Define A ≡ z ∣ x → z and z → y and B ≡ z ∣ z → x and y → z.

Since x → y and N→x  N→y we have ∣ B ∣∣ A ∣ 1.

We shall prove by induction on ∣ A ∣: Assume |A| 0.

Let b be the unique element in B. The relation → cycles on x,y,b. By Independence

we can assume that every element which beats both x and y beats b and every element

beaten by both x and y is beaten by b. Then, by Neutrality x  y  b.

Assume that the induction hypothesis holds for ∣ A ∣ m − 1 ≥ 0 and let ∣ A ∣ m.

Choose a ∈ A and b ∈ B. By Independence, the ranking of x and y will not change if

we assume that (i) a → b and (ii) a → z iff x → z for all z ∉ a,b,x,y.

Then x → a, a → b and b → x, while for all z ∉ x,a,b, x → z iff a → z. It follows

from the case in which ∣ A ∣ 0, that a  →x.

We also have a → y and N→a  N→y. The set z|a → z and z → y includes m − 2

elements. Therefore, by the induction hypothesis a  →y. Thus x  →y.

Finally, consider a ranking method that satisfies the three axioms on the set X. Suppose

x,y ∈ X.

If N→x  N→y ≥ 1, let E be a subset not including y whose

∣ z ∣ x → z ∣ − ∣ z ∣ y → z ∣ elements are all beaten by x. Let →′ denote the



relation obtained from → by reversing the results of the comparisons of x to the elements in

E. Then x  →′ y by the Lemma. Applying the Monotonicity axiom ∣ E ∣ times, we

have x  y.

If N→x  N→y  0, let h be a third element. Let →′ be the relation derived from →

by reversing the results of the comaprison between y and h. Then, N→′ x ≥ N→′ y ≥ 1,

and therefore x  →′ y from the previous conclusion. If y  →x, then by Monotonicity

we would have y  →′ x and hence x  →y. 


