
Course: Microeconomics, New York University
Lecturer: Ariel Rubinstein
Exam: Mid-term, October 2008
Time: 3 hours (no extensions)
Instructions: Answer the following three questions (each question

in a seperate exam booklet)

Question 1
A decision maker has a preference relation over the pairs (xme, xhim) with

the interpretation that xme is an amount of money he will get and xhim is the
amount of money another person will get. Assume that

(i) for all (a, b) such that a > b the decision maker strictly prefers (a, b) over
(b, a).

(ii) if a′ > a then (a′, b) � (a, b).
The decision maker has to allocate M between him and another person.

(a) Show that these assumptions guarantee that he will never allocate to the
other person more than he gives to himself

Let B(M) = {(a, b)|a + b ≤ M} be the set of feasible allocations, and
x(M) = (xme, xhim) be the chosen allocation from the feasible set.
Then x(M) % (a, b) for any (a, b) ∈ B(M).
Assume x(M) = (x1, x2), and x1 < x2. Then (x2, x1) � (x1, x2) by (i),
and (x2, x1) is feasible, a contradiction. Therefore x1 ≥ x2.

(b) Assume (i), (ii) and

(iii) The decision maker is indifferent between (a, a) and (a − ε, a + 4ε)
for all a and ε > 0.
Show that nevertheless he might allocate the money equally.

Suppose the preferences are represented by, for example

u(x, y) =
{

4x+ y if y ≥ x
2x+ 3y ∗ if x ≥ y

* any preferences which have a kink at x = y and satisfy (i) and (iii) will
work - see picture
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These preferences satisfy monotonicity.
The preferences satisfy (iii) since ∀a, u(a, a) = 5a = 4(a− ε) + (a+ 4ε) =
u(a− ε, a+ 4ε).
They also satisfy (i) since if x2 > x1, then u(x1, x2) = 4x1 + x2 =
5x1 + (x2 − x1) < 5x+ 2(x2 − x1) = 2x2 + 3x1 = u(x2, x1).

In this case, the utility would be maximized by setting x = y = M
2 .

(c) Assume (i), (ii), (iii) and

(iv) The decision maker’s preferences are also differentiable (according to
the definition given in class).

Show that in this case, he will allocate to himself (strictly) more than to
the other.

Assume by contradiction the DM chooses to allocate x(M) = (M
2 ,

M
2 ).

By differentiability of the preferences, v(x) = (4, 1) (i.e. the hyperplane
separating the improving directions would be the hyperplane 4x + y =
M). But then (1,−1) is a strictly improving direction, and the bundle
(M

2 + ε, M
2 − ε) � (M

2 ,
M
2 ) = x(M) would be affordable for any ε > 0, a

contradiction.

Question 2 (based on work of Kfir Eliaz and Ariel Rubinstein)
Let X be a (finite) set of alternatives. Given any choice problem A (where

|A| ≥ 2), the decision maker chooses a set D(A) ⊆ A of two alternatives which
he wants to examine more carefully before making the final decision.

The following are two properties of D:

A1: If a ∈ D(A) and a ∈ B ⊂ A then a ∈ D(B).

A2: If D(A) = {x, y} and a ∈ D(A− {x}) for some a different than x and y,
then a ∈ D(A− {y}).

Answer the following four questions. A full proof is required only for the last
question:

(a) Find an example of a D function which satisfies both A1 and A2.

Let � be a strict preference on X. Let D(A) be the set of the two �–best
elements in A.

(b) Find a function D which satisfies A1 and not A2.

Let � be a strict preference on X. Let D(A) be the set containing the
�–best element and the �–worst element in A.
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(c) Find a function D which satisfies A2 and not A1.

Let � be a strict preference on X. Let D(A) be the set containing the sec-
ond and third �–best elements in A (if |A| ≥ 3) and D(A) = A otherwise.

(d) Characterize the set of D functions which satisfy both axioms.

Claim: For any D(A) Satisfying A1, A2 there exists an ordering � of the
elements of X s.t. D(A) is the set of the two �–best elements in A.

Proof: We will build � inductively. Let D(X) = {x1, x2}.
Define x1 � x2 � z for any z ∈ X\{x1, x2}.
Assume we defined x1 � x2 � x3 � . . . � xk � z for any z ∈ X\{x1, . . . , xk},
and D(X\{x1, . . . , xj−2}) = (xj−1, xj) for 3 ≤ j ≤ k. By A1, xk ∈
D(X\{x1, . . . , xk−1}). Denote xk+1 such that D(X\{x1, . . . , xk−1}) =
{xk, xk+1}. Define xk � xk+1 � z for any z ∈ X\{x1, . . . , xk+1}. This
procedure is well defined by A2 (since it guarantees xk is always well de-
fined). The procedure ends because X is finite, therefore � is complete.
By construction it is transitive.

Question 3
An economic agent has to choose between projects. The outcome of each

project is uncertain. It might yield a failure or one of K “types of success”.
Thus, each project z can be described by a vector of K non-negative numbers,
(z1, ..., zK) where zk stands for the probability that the project success will be of
type k.

Let Z ⊂ <K
+ be the set of feasible projects. Assume Z is compact, convex

and satsifies “free disposal”.
The decision maker is an Expected Utility maximizer.
Denote by uk the vNM utility from the k–th type of success, and attach 0 to

failure. Thus the decision maker chooses a project (vector) z ∈ Z in order to
maximize

∑
zkuk.

(a) First, formalize the decision maker’s problem. Then, formalize (and
prove) the claim: If the decision maker suddenly values type k success
higher than before, he would choose a project assigning a higher probabil-
ity to k.

The DM solves:

maxz∈Zz · u = maxz∈Z

K∑
k=1

zkuk

Claim: Let u′i = ui for every i 6= k, u′k > uk. Then z(k) ≤ z′(k)
(where z(k) is the probability assigned to success type k in the project
chosen when the valuations are uk, z′(k) the probabilty assigned when the
valuations are u′k).
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Proof: Equivalent to the proof of “The Law of Demand (or Supply)”.
Let z be the chosen project under the valuations uk, z′ be the chosen
project under u′k.
Then (z − z′) · [u− u′] = [z − z′] · u+ [z′ − z] · u′ ≥ 0, since z · u ≥ z′ · u,
and z′ · u′ ≥ z · u′. Since u − u′ = (0, . . . , 0, uk − u′k, 0, . . . , 0) < 0, then
z(k)− z′(k) < 0 QED.

(b) Apparently, the decision maker realizes that there is an additional uncer-
tainty. The world may go ”one way or another”. With probability α the
vNM utility of the k’th type of success will be uk and with probability 1−α
it will vk. Failure remains 0 in both contingencies.

First, formalize the decision maker’s new problem. Then, formalize (and
prove) the claim: Even if the decision maker would obtain the same ex-
pected utility, would he have known in advance the direction of the world,
the existence of uncertainty makes him (at least weakly) less happy.

The DM now solves:

maxz∈Zz · [αu+ (1− α)v] = maxz∈Z

K∑
k=1

zk[αuk + (1− α)vk]

Claim: The maximal expected utility in the uncertain world is weakly
less than the maximal expected utility when the direction of the world is
known.
Proof: Denote the DM’s chosen project under the first direction of the
world (with vNM utility uk) as zu = (zu(1), . . . , zu(K)) ∈ Z, and his
chosen project under the second direction of the world (with vNM utility
vk) zv = (zv(1), . . . , zv(2)) ∈ Z.
Then maxz∈Zz ·[αu+(1−α)v] ≤ α[maxz′∈Zz

′ ·u]+(1−α)[maxz′∈Zz
′ ·v] =

αzu · u+ (1−α)zv · v. Even if zu · u = zv · v = EU , then maxz∈Zz · [αu+
(1− α)v] ≤ EU .
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