ANSWER KEY OF EXAM06

1(a) Maximization the preferences \succeq represented by the Cobb-Douglas utility function $u(x) = x_1^{0.5} x_2^{0.5}$ leads to the given demand function x(p, w, c). There are two different cases to consider.

Case 1: $0.5 \frac{w}{p_1} \le c$.

In this case, x(p, w, c) is equal to the point $(0.5\frac{w}{p_1}, 0.5\frac{w}{p_2})$, which is the unique maximizer of *u* on the usual budget set $B(p, w) = \{x \mid px \le w\}$. In particular, x(p, w, c) is the unique maximizer of *u* on B(p, w, c).

Case 2: $0.5 \frac{w}{p_1} > c$.

Suppose by contradiction that $x(p, w, c) = (c, \frac{w-p_1c}{p_2})$ is not the unique maximizer of u on B(p, w, c). Then there is a $y \in B(p, w, c)$ with $y \neq x(p, w, c)$ such that $y \succeq x(p, w, c)$. By strict monotonicity of u we must have $y_1 < c$, otherwise we would have $x(p, w, c) \succ y$ and moreover we can assume py = w. Define $\overline{x} = (0.5 \frac{w}{p_1}, 0.5 \frac{w}{p_2})$. Now, since $y_1 < c < 0.5 \frac{w}{p_1}, x(p, w, c)$ can be written as a strict convex combination of the points y and \overline{x} . Since \overline{x} is the unique maximizer of u on B(p, w), by strict convexity of \succeq we must have $x(p, w, c) \succ y$, a contradiction.

1(b) Suppose by contradiction that x(p, w, c) is consistent with maximization of a preference relation \succeq . Fix a price vector p and wealth level w. Pick a $c < \frac{w}{p_1}$, so that $x(p, w, c) = (0.5c, \frac{w-p_10.5c}{p_2})$. Now we can pick a c', sufficiently close to c, such that

$$0.5c' < c < c' < \frac{w}{p_1}.$$

Since $0.5c' < \frac{w}{p_1}$, this implies $x(p, w, c') = (0.5c', \frac{w-p_10.5c'}{p_2}) \neq x(p, w, c)$. Moreover, since 0.5c < c', we have $x(p, w, c) \in B(p, w, c')$, and hence, $x(p, w, c') \succ x(p, w, c)$. On the other hand, since $0.5c' < c, x(p, w, c') \in B(p, w, c)$, and hence, $x(p, w, c') \prec x(p, w, c)$, a contradiction.

1(c) Fix a parameter vector $t^* = (p^*, w^*, c^*)$ and assume $\frac{\partial V(t^*)}{\partial c} > 0$. We claim that $x_1(t^*) = c^*$.

Suppose by contradiction that $x_1(t^*) < c^*$. But then since $\frac{\partial V(t^*)}{\partial c} > 0$, there exists an $\varepsilon > 0$ such that $V(p^*, w^*, c^* - \varepsilon) < V(t^*)$ and $c^* - \varepsilon > x_1(t^*)$. Since $p^*x(t^*) = w^*$, it follows that $x(t^*) \in B(p^*, w^*, c^* - \varepsilon)$. Hence, $V(t^*) = u(x(t^*)) \leq V(p^*, w^*, c^* - \varepsilon)$, a contradiction.

2(a)

- Let $c^*(A, a) \equiv a$.
- Let \succeq be a strict ordering on X and let $c^*(A, a)$ be the \succeq maximal element of A.

2(b) Let us write "DB" and "EIIA" instead of "Default bias" and "Extended IIA", respectively.

Asymmetry: If $x \succ y$, then $c^*(\{x, y\}, y) = x$. So, by DB, $c^*(\{x, y\}, x) = x \neq y$, that is, "not $y \succ x$ ".

Transitivity: Suppose x > y and y > z. Then, $c^*(\{x, y\}, y) = x$ and $c^*(\{z, y\}, z) = y$. Now, $c^*(\{x, y, z\}, z)$ cannot be *y*, otherwise by DB, we would have $c^*(\{x, y, z\}, y) = y$, and from EIIA it would follow that $c^*(\{x, y\}, y) = y$.

 $c^*(\{x, y, z\}, z)$ cannot be *z* either, otherwise by EIIA, we would have $c^*(\{z, y\}, z) = z$. So, $c^*(\{x, y, z\}, z)$ must be *x*. By EIIA, this implies $c^*(\{x, z\}, z) = x$, that is, $x \succ z$.

2(c) As in the first example of part (a), we may have $c^*(\{x, y\}, y) = y$ and $c^*(\{x, y\}, x) = x$.

2(d) If $a \in A$ is not \succ maximal in A, for some $y \in A$ with $y \neq a$ we have $y \succ a$, that is, $c^*(\{a, y\}, a) = y$. Suppose by contradiction a belongs to C(A), that is, $c^*(A, x) = a$ for some $x \in A$. Then, by DB, $c^*(A, a) = a$. So, by EIIA, $c^*(\{a, y\}, a) = a$, a contradiction which shows that $a \notin C(A)$.

Conversely, assume $a \in A$ is \succ maximal in A. We claim that $c^*(A, a) = a$. Suppose by contradiction that $c^*(A, a) = y \neq a$. Then EIIA implies $c^*(\{a, y\}, a) = y$, that is, $y \succ a$. This contradicts maximality of a and proves that $c^*(A, a) = a$. By definition of C(A), we immediately conclude that $a \in C(A)$.

The interpretation here is that the choice correspondence *C* chooses those elements which are not \succ dominated by some other feasible alternative.

3(a) Suppose $U(x) = \sum_{k} \frac{x_k}{n(x)} v_k$. A1: For any natural number λ

$$U(\lambda x) = \sum_{k} \frac{\lambda x_{k}}{n(\lambda x)} v_{k} = \sum_{k} \frac{\lambda x_{k}}{\lambda n(x)} v_{k} = U(x).$$

A2: If n(x) = n(y), then

$$U(x) \ge U(y) \Leftrightarrow \sum_{k} x_{k} v_{k} \ge \sum_{k} y_{k} v_{k} \Leftrightarrow$$
$$\sum_{k} (x_{k} + z_{k}) v_{k} \ge \sum_{k} (y_{k} + z_{k}) v_{k} \Leftrightarrow U(x + z) \ge U(y + z),$$

where in the last equivalence we use the fact that n(x + z) = n(y + z).

3(b) Suppose that the decision maker chooses a ball from bag *x*, and he gets a prize depending on the color of the ball he chose. Then we can identify a bag *x* with a lottery p(x) in which the prize associated with the color *x* is received with probability x/n(x). Since $p(x) = p(\lambda x)$ we should expect $x \sim \lambda x$. Moreover, A2 would follow in this case from the independence axiom.

3(c) Let K = 3, and let \succeq_L be the usual lexicographic relation on \mathbb{R}^3 . Define the preference relation \succeq on *X* as

$$x \succeq y \Leftrightarrow \left(\frac{x_1}{n(x)}, \frac{x_2}{n(x)}, \frac{x_3}{n(x)}\right) \succeq_L \left(\frac{y_1}{n(y)}, \frac{y_2}{n(y)}, \frac{y_3}{n(y)}\right)$$

A1: Note that for any x and any natural number λ , $\frac{x_i}{n(x)} = \frac{\lambda x_i}{n(\lambda x_i)}$ for all *i*. Hence, $x \sim \lambda x$. A2: $x \succeq y$ and n(x) = n(y) iff $(x_1, x_2, x_3) \succeq_L (y_1, y_2, y_3)$ iff $(x_1 + z_1, x_2 + z_2, x_3 + z_3) \succeq_L (y_1 + z_1, y_2 + z_2, y_3 + z_3)$ iff $x + z \succeq y + z$ (since n(x + z) = n(y + z)).

To see that \geq does not admit a representation of the form given in part (a), suppose to the contrary that $U(x) = \sum_{i=1}^{3} \frac{x_k}{n(x)} v_k$ represents \geq .

Note that $(1,0,n) \succ (0,1,0)$ for all *n*. Hence, $\frac{v_1}{n+1} + \frac{nv_3}{n+1} > v_2$ for all *n*. Passing to limit as $n \rightarrow \infty$ gives $v_3 \ge v_2$. On the other hand, $(0,1,0) \succ (0,0,1)$ implies $v_2 > v_3$, a contradiction.