ANSWER KEY OF EXAM06

1(a) Maximization the preferences \geq represented by the Cobb-Douglas utility function $u(x) = x_1^{0.5} x_2^{0.5}$ leads to the given demand function $x(p, w, c)$. There are two different cases to consider.

Case 1: $0.5 \frac{w}{p_1} \leq c$.

In this case, $x(p, w, c)$ is equal to the point $(0.5 \frac{w}{p_1}, 0.5 \frac{w}{p_2})$, which is the unique maximizer of *u* on the usual budget set $B(p, w) = \{x \mid px \leq w\}$. In particular, $x(p, w, c)$ is the unique maximizer of *u* on $B(p, w, c)$.

Case 2: $0.5 \frac{w}{p_1} > c$.

Suppose by contradiction that $x(p, w, c) = (c, \frac{w-p_1 c}{p_2})$ is not the unique maximizer of *u* on *B*(*p*,*w*,*c*). Then there is a $y \in B(p, w, c)$ with $y \neq x(p, w, c)$ such that $y \geq x(p, w, c)$. By strict monotonicity of *u* we must have $y_1 < c$, otherwise we would have $x(p, w, c) > y$ and moreover we can assume $py = w$. Define $\bar{x} = (0.5 \frac{w}{p_1}, 0.5 \frac{w}{p_2})$. Now, since $y_1 < c < 0.5 \frac{w}{p_1}, x(p, w, c)$ can be written as a strict convex combination of the points *y* and \bar{x} . Since \bar{x} is the unique maximizer of *u* on *B*(*p*,*w*), by strict convexity of \geq we must have $x(p, w, c) > y$, a contradiction.

1(b) Suppose by contradiction that $x(p, w, c)$ is consistent with maximization of a preference relation \geq . Fix a price vector *p* and wealth level *w*. Pick a $c < \frac{w}{p_1}$, so that $x(p, w, c) = (0.5c, \frac{w-p_10.5c}{p_2})$. Now we can pick a *c*', sufficiently close to *c*, such that

$$
0.5c' < c < c' < \frac{w}{p_1}.
$$

Since $0.5c' < \frac{w}{p_1}$, this implies $x(p, w, c') = (0.5c', \frac{w-p_1 0.5c'}{p_2}) \neq x(p, w, c)$. Moreover, since $0.5c < c'$, we have $x(p, w, c) \in B(p, w, c')$, and hence, $x(p, w, c') > x(p, w, c)$. On the other hand, since $0.5c' < c$, $x(p,w,c') \in B(p,w,c)$, and hence, $x(p,w,c') \prec x(p,w,c)$, a contradiction.

1(c) Fix a parameter vector $t^* = (p^*, w^*, c^*)$ and assume $\frac{\partial V(t^*)}{\partial c} > 0$. We claim that $x_1(t^*) = c^*$.

Suppose by contradiction that $x_1(t^*) < c^*$. But then since $\frac{\partial V(t^*)}{\partial c} > 0$, there exists an $\varepsilon > 0$ such that $V(p^*, w^*, c^* - \varepsilon) < V(t^*)$ and $c^* - \varepsilon > x_1(t^*)$. Since $p^*x(t^*) = w^*$, it follows that $x(t^*) \in B(p^*, w^*, c^* - \varepsilon)$. Hence, $V(t^*) = u(x(t^*)) \le V(p^*, w^*, c^* - \varepsilon)$, a contradiction.

2(a)

- \bullet Let $c^*(A, a) \equiv a$.
- \bullet Let \succeq be a strict ordering on *X* and let $c*(A, a)$ be the \succeq maximal element of *A*.

2(b) Let us write "DB" and "EIIA" instead of "Default bias" and "Extended IIA", respectively.

Asymmetry: If $x > y$, then $c^*(\{x, y\}, y) = x$. So, by DB, $c^*(\{x, y\}, x) = x \neq y$, that is, "not $y > x$ ".

Transitivity: Suppose $x > y$ and $y > z$. Then, $c^*(\{x, y\}, y) = x$ and $c^*(\{z, y\}, z) = y$. Now, $c*(\{x, y, z\}, z)$ cannot be *y*, otherwise by DB, we would have $c*(\{x, y, z\}, y) = y$, and from EIIA it would follow that $c^*(\{x, y\}, y) = y$.

 $c*(\{x, y, z\}, z)$ cannot be *z* either, otherwise by EIIA, we would have $c*(\{z, y\}, z) = z$. So, $c^*(\{x, y, z\}, z)$ must be *x*. By EIIA, this implies $c^*(\{x, z\}, z) = x$, that is, $x \succ z$.

2(c) As in the first example of part (a), we may have $c^*(\{x, y\}, y) = y$ and $c^*(\{x, y\}, x) = x.$

2(d) If $a \in A$ is not \ge maximal in A, for some $y \in A$ with $y \neq a$ we have $y \geq a$, that is, $c^*(\{a, y\}, a) = y$. Suppose by contradiction *a* belongs to $C(A)$, that is, $c^*(A, x) = a$ for some $x \in A$. Then, by DB, $c^*(A, a) = a$. So, by EIIA, $c^*(\{a, y\}, a) = a$, a contradiction which shows that $a \notin C(A)$.

Conversely, assume $a \in A$ is \succ maximal in A. We claim that $c^*(A, a) = a$. Suppose by contradiction that $c^*(A, a) = y \neq a$. Then EIIA implies $c^*(\{a, y\}, a) = y$, that is, $y \succ a$. This contradicts maximality of *a* and proves that $c*(A, a) = a$. By definition of $C(A)$, we immediately conclude that $a \in C(A)$.

The interpretation here is that the choice correspondence *C* chooses those elements which are not \geq dominated by some other feasible alternative.

3(a) Suppose $U(x) = \sum_{k} \frac{x_k}{n(x)} v_k$. A1: For any natural number λ

$$
U(\lambda x) = \sum_{k} \frac{\lambda x_k}{n(\lambda x)} v_k = \sum_{k} \frac{\lambda x_k}{\lambda n(x)} v_k = U(x).
$$

A2: If $n(x) = n(y)$, then

$$
U(x) \ge U(y) \Leftrightarrow \sum_{k} x_{k}v_{k} \ge \sum_{k} y_{k}v_{k} \Leftrightarrow
$$

$$
\sum_{k} (x_{k} + z_{k})v_{k} \ge \sum_{k} (y_{k} + z_{k})v_{k} \Leftrightarrow U(x + z) \ge U(y + z),
$$

where in the last equivalence we use the fact that $n(x + z) = n(y + z)$.

3(b) Suppose that the decision maker chooses a ball from bag *x*, and he gets a prize depending on the color of the ball he chose. Then we can identify a bag x with a lottery $p(x)$ in which the prize associated with the color *x* is received with probability $x/n(x)$. Since $p(x) = p(\lambda x)$ we should expect $x \sim \lambda x$. Moreover, A2 would follow in this case from the independence axiom.

3(c) Let $K = 3$, and let \succeq_L be the usual lexicographic relation on \mathbb{R}^3 . Define the preference relation \succeq on *X* as

$$
x \gtrsim y \Leftrightarrow \left(\frac{x_1}{n(x)}, \frac{x_2}{n(x)}, \frac{x_3}{n(x)}\right) \gtrsim_L \left(\frac{y_1}{n(y)}, \frac{y_2}{n(y)}, \frac{y_3}{n(y)}\right).
$$

A1: Note that for any *x* and any natural number λ , $\frac{x_i}{n(x)} = \frac{\lambda x_i}{n(\lambda x_i)}$ for all *i*. Hence, $x \sim \lambda x$. A2: $x \ge y$ and $n(x) = n(y)$ iff $(x_1, x_2, x_3) \ge L (y_1, y_2, y_3)$ iff $(x_1 + z_1, x_2 + z_2, x_3 + z_3) \geq L (y_1 + z_1, y_2 + z_2, y_3 + z_3)$ iff $x + z \geq y + z$ (since $n(x + z) = n(y + z)$).

To see that \geq does not admit a representation of the form given in part (a), suppose to the contrary that $U(x) = \sum_{i=1}^{3} \frac{x_k}{n(x)} v_k$ represents \succeq .

Note that $(1, 0, n) \succ (0, 1, 0)$ for all *n*. Hence, $\frac{v_1}{n+1} + \frac{nv_3}{n+1} > v_2$ for all *n*. Passing to limit as $n \to \infty$ gives $v_3 \ge v_2$. On the other hand, $(0, 1, 0) > (0, 0, 1)$ implies $v_2 > v_3$, a contradiction.