2 The basic model

This chapter aims to make clear the assumptions lying behind
evolutionary game theory. I will be surprised if'it is fully successful. When
I first wrote on the applications of game theory to evolution {Maynard
Staith & Price, 1973), T was unaware of many of the assumptions being
made and of many of the distinctions between different kinds of games
which ought to be drawn. No doubt many confusions and obscurities
remain, but at least they are fewer than they were.

In this chapter, I introduce the concept of an ‘evolutionarily stable
strategy’, or ESS. A ‘strategy’ is a behavioural phenotype: ie. itisa
specification of what an individual will do in any situationin which it
may find itself. An ESSisa strategy such that, if all the members of 3
population adopt it, then no mutant strategy could invade the
population under the influence of natural selection. The concept is
couched in terms of a ‘strategy’ because it arose in the context of
animal behaviour. The idea, however, can be applied equally well to
any kind of phenotypic variation, and the word strategy could be
replaced by the word phenotype; for example, a strategy could be the
growth form of 4 plant, or the age atfirst reproduction, or the relative
numbers of sons and daughters produced by a pareni.

The definition of an ESS as an uninvadable strategy can be made
more precise in particular cases; that is, if precise assumptions are
made about the nature of the evelving population. Section A of this
chapter describes the context in which an ESS was first defined by
Maynard Smith & Price (1973), and leads to the mathematical
conditions (2.4a, b) for uninvadability. The essential features of this
model arc that the population is Infinite, that reproduction is asexual,
and that pairwise contests rake place between two opponents, which
de not differ in any way discernible 1o themselves before the contest
slarts (i.e. ‘symmetric’ contests). It is also assumed that there is a
finite set of alternative strategies, so that the game can be expressed in
matrix form; this assumption will be relaxed in Chapter 3.
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Still using this model of pairwise contests, .I then contz'"ast the
concept of an ESS with that of a population in an evoiutzonamlly
stable state. The distinction is as follows: Suppos.e t.hqt the stable
strategy for some particular game requires an individual to di
cometimes one thing and sometimes another—el.g. .tc'> do I.w1t
probability P, and J with probability 1—2. An Endlvldual with a
variable behaviour of this kind is said to adopt a n'luxcd strategy, a'md
the uninvadable strategy is a mixed ESS, Alternatively, a populatlon‘
might consist of some individuals which allways do 4 and othe?
which always do B. Such a population rru.ght evolve to a stal.:_) €
equilibrium with both types present — that is, to rfm evolutionarily
stable polymorphic state. The question thcrll El‘I'ISGS w.hether the
probabilities in the two cases correspond; that is, if the mixed ESS Is
to do [ with probability P, s it also true‘that a stab.le polymorph;;
population contains a proportion £ ofindividuals .WhICh alwsltysglof ;
This guestion is discussed in section A belolw, a_nd mlAppendu(\ ,for
the case of asexual {or one-locus haploid) inheritance: the mozfe
difficult but realistic case of sexual diploids is postponed to Chapter 4.

Section B reviews the assumptions made in the modell_. and
indicates how they might be relaxed or blroadc.ned. S.ect.lc.)n C
considers a particular extension of the model, in which an 1nd1v1dga;
is ‘playing the field’; that is, its success depends., not on a contest \;H
a single opponent, but on the aggregate behaw.our ofgther n"lerln‘ c}:s
of the popuiation as a whote, or some section Of.lt' .ThlS 15 tlc
appropriate extension of the model fo‘r 'sucf'l apphcatzon§ as tlf;
evolution of the sex ratio. of dispersal, of life history strategies, or q
plant growth. The conditions for a strategy Lo be an ESS for this
extended model are given in equations (2.9).

A The Hawk—Dove game

Imagine that two animals arc contesting a resource .of value V _By
‘value’, T mean that the Darwinian {itness of an mdmd}lgl oblalm—ng
the rcsburce would be increased by V. Note that the indwzdua? which
does not obtain the resource need not have zero fitness. Imagme,_ for
example, that the ‘resource’ is a territory In 4 favourablg habﬂat, a.nd
that there is adequate space in a less favourable habnatlm w}.nch
losers can breed. Suppose, also. that animals with & territory in a
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favourable habitat produce, on average, 5 offspring, and that those
breeding in the less favourable habitat produce 3 offspring. Then ¥
would equal 5—3=2 offspring. Thus V is the gain in fitness to the
winner, and losers do not have zero fitness. During the contest an
animal can behave in one of three ways, ‘display’, ‘cscalate’ and
‘retreat’. An animal which displays does not injure its opponent; one
which escalates may succeed in doing so. An animal which retreats
abandons the resource to its opponent.

In real contests, animals may switch from one behaviour to
another in a complex manner. For the moment, however, T suppose
that individuals in a given contest adopt one of two ‘strategies’; for
the time being, I assume that a particular individual always behaves
in the same way.

‘Hawk’: escalate and continue until injured or until opponent
retreats,

‘Dove’: display, retreat at once if opponent escalates. If two
opponents both escalate, it is asumed that, sooner or later, one is
injured and forced to retreat. Alternatively, one could suppose that
both suffer some injury, but for the moment [ am seeking the simplest
possible model. Injury reduces fitness by a cost, C.

Table 1. Payoffs for the
Hawk—Dove game

H D
H Lr-¢y v
D 0 viz

Writing H and D for Hawk and Dove, it is now possible to write
down the ‘payoff matrix’ shown in Table 1. In this matrix, the entries
are the payoffs, or changes of fitness arising from the contest, to the
individual adopting the strategy on the left, if his opponent adopts
the strategy above. Some further assumptions were made in writing
down the matrix, as follows:

(i) Hawk v. Hawk Each contestant has a 50% chance of
injuring its opponent and obtaining the resource, ¥, and a 50%

)

chance of being injured. Thus it has been assumed that the factors,
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genetic OT otherwise, determining behaviour are independent of those
which determine success or failure in an escalated contest. ther? in
Chapter 8, I discuss contests in which differences, for example in size,
which influence success in an escalated contest can be detected by the

contestants.

(i) Hawk v. Dove Hawk obtains the resource, and Dove
retreats before being injured. Note that the entry of zero for Dove
does not mean that Doves, in a pepulation of Hawks, have zero
fitness; it means that the fitness of a Dove does notalter asaresultofa
contest with a Hawk.

In the imaginary example, described above, of a contest over a
territory, the fitness of a Dove, after a contest with a Hawk, would be
3 offspring.

(it} Dove v. Dove The resource is shared equally by the two
contestants. [f the resource is indivisible, the contestants might waste
much time displaying; such contests are analysed in Chapter 3.

Now imagine an infinite population of individuals, each adopting
the strategy H or D, pairing off at random. Before the contest, all
individuals have a fitness W,

Let p = frequency of H strategists in the population,

W(H), W(D) = fitness of H and D strategists respectively,

and E(H.D) = payoff to individeal adopting H against a D
opponent {and a similar notation for other
strategy pairs).

Then if each individual engages in one contest,

W(H) = Wo+p E(H,H)+(1 —p) EH,D), } (2.1)

W(D) = Wy+p E(D,H)+(1 —p) E(D.D).

It is then supposed that individuals reproduce their kind
asexually, in numbers proportional to their fitnesses. The frequency
P’ of Hawks in the next generation is

P =p WH)W,
where W = p W(H)+(1—p) W(D).

(2.2)
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Equation (2.2) describes the dynamics of the population. Knowing
the values of ¥ and C, and the initial frequency of #, it would be a
stmple matter to cafculate numerically how the population changesin
time. It is more fruitful, however, to ask what are the stable states, if
any, towards which the population will evolve. The stability criteria
will first be derived for the gencral case, in which more than two
strategies arc possible, and then applied to the two-strategy Hawk -
Dove game.

[f fis a stable strategy,* it must have the property that, if almost all
members of the population adopt 7, then the fitness of these typical
members is greater than that of any possible mutant: otherwise, the
mutant could invade the population, and F would not be stabie. Thus
consider a population consisting mainly of /7, with a small frequency p
of some mutant J. Then, as in (2.1)

»

W) = Wo+(1=p) E(LD+p E(ID), } 03

W(J) = Wot(1—p) E(J.D)+p EUJ.T).

Since { is stable, W(I)> W(J). Since p<1, this requires, for all
J# T

either  E(LIY > E(J.D (2.4a)
or E(1Ty = E(J Iy and E(1,0)y > E(J.J). (2.45)

These conditions were given by Maynard Smith & Price (1973).

Any strategy satisfying (2.4) is an ‘evolutionarily stable strategy’,
or ESS, as defined at the beginning of this chapter. Conditions (2.4a,
&) will be referred to as the ‘standard conditions’ for an ESS, bat it
should be clear that they apply only to the particular model just
described, with an infinite population, asexual inheritance and
pairwise contests,

We now use these conditions to find the ESS of the Hawk—Dove
game.

Clearly, D is not an ESS, because E(D,D) < E(H, DY, a population
of Doves can be invaded by a Hawk mutant.

* The distinction between a stable strategy and a stable state of the population is
discussed further on pp. 16-17 and Appendix .
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His an ESSif (¥ —C)=0, or V> C. In other words, if it is worth
risking injury to obtain the resource, 17 is the oaly sensible strateg.y.

But what if < C? Neither / nor D is an ESS. We can proc-eed in
two ways. We could ask: what would happen to a popglatlon of
Hawks and Doves? I shall return to this question later in this chapter,
put first 1 want to ask what will happen if an individual can play
sometimes £ and sometimes . Thus let strategy / be defined as ‘play
H with probability P, and D with probability (1—F)’; when an
individual reproduces, it transmits to its offspring, not H or D, but the
probability P of playing H. It does not matter whet?vjer each
individual plays many games during its life, with probability P' of
playing H on each occasion, the payoffs from different games being
additive, or whether each individual plays only one game, P then
being the probability that individuals of a particular genotype play H.

Such a strategy I, which chooses randomly from a set of possible
actions, is called a ‘mixed’ strategy; this contrasts with a ‘pure’
strafegy, such as Hawk, which contains no stochastic element. .

Is there a value of P such that 7is an ESS? To answer this question,
we make use of a theorem proved by Bishop & Cannings (1978},
which states:

If I'is a mixed ESS which includes, with non-zero probability, the
pure strategies 4,.8.C, . .., then

E(A) = E(B.) = E(C.I) ... = E(LI).

The reason for this can be seen intuitively as follows. If
E(A,Iy> E(B,I) then surely it would pay to adopt A more often and B
less often. If so, then { would not be an ESS. Hence, if /is an ESS, the
expected payofls to the various strategies composing { must be equal.
A more precise formulation and proof of the theorem is given in
Appendix C. I1s importance in the present context is that, if there is a
value P which makes fan ESS of the Hawk-Dove game, we can find it
by solving the equation

E(H.D) = E(D,I),

therefore

PEHH)+(1—PYEH.D) = PEDH)+(1 — P) E(D,D),
(2.5)
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therefore
FF=CQ)P+V(1-P) = V(1 P),
or P =ViC. (2.6)
More generally, for the matrix:
I g
I a b
J ¢ d,

there is a mixed ESS if g < ¢ and d < b, the ESS
probability

being to adopt 7 with
- _=a
(b+c—a—d) (2.7)

If thereis an ESS of the form 7 — PH4{1—P)D,then Pis given by
equation (2.6), We still have ro prove, however, that / satisfies
equations (2.44). Thus E(HI) = EDJT) = E(LD), and therefore

stability requires that E(1.D)> E(D,D) and E(LH)>FE(H H). To
check this:

E(ILD) = PV+3(1—-P)¥ > E(D.D).
and  E(LH) = 3P(V—C) > E(H,H), since V < C.

Thus we have shown that, when V<, a mixed strategy with
P=V{Cis evolutionarily stable. The first conclusion from our model,
then, is that, in contests in which the cost of injury is high relative to
the rewards of victory, we expect to find mixed strategies, The model
Is so oversimplified that the conclusion must be treated with reserve.
Field data bearing on it are discussed in Chapters 6 and 7, after some
possible complications have been analysed theoretically,

The attainment of a mixed ESS depends on the assumption that a
genotype can exist which specifies the mixed strategy and which can
breed true. T now return to the question: what would happen to a
population of pure Hawks and pure Doves? We have already seen
that, if J'< C, there can be no pure ESS. There may, however, be a
stable genetic polymorphism; ie. there may be a mixture of
pure-breeding Hawks and Doves which is genetically stable.

Consider, then, a population consisting of & and IV in frequencies p
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nd 1—p. At equilibrium, the fitnesses W{#) and W{D) must be
a C o
equal. That 1s

pE(HH)+(1—p)E(H.D) = pE(D.H)+(1 - p)E(D.D). (2.8)

Equation (2.8) is identical to equati(lm (2.5)., with p replilcmgt;’:’é
Thus if P gives the frequency of H in 4 mu.(e'd ESS, in p_P
frequency of H in a population at genetic equilibrium, t entpﬁ' .
This conclusion holds also if there are more than two pure stra1 egies,
But is the genctic polymorphism stat?le? When there :archonTy tv:iz
pure strategies, if the mixed strategy is stable then so 1s-t e gi,ene ¢
polymorphism; thus, for the Hawk-Dove game, a.geneuf polymo
phism with a frequency of p=¥/C of pure Hawk is s.tab e.. -

Unhappily, if there are more than two pure sjnrategles, this mm&e
conclusion no longer holds. It is possible for a mixed ESS tolk?e stable
but the corresponding polymorphism to be uns.table, and ‘-jlui) ‘.fe-rts?'
The problem of stability is discussed further in Appenfil)%l. ; 1f z
mainly of mathematical interest, if any_ because the S.tdbl 1tyf0
polymorphism in an asexual population is a proplem different r??
that of the stability of a sexual diploid population (see Chapter 4,
Secltl\(;znik)ﬁow to extend the Hawk-Dove game by including mor‘e
complex strategies. It will be convenient to r.eplacc .tt'le algebrailc
payoffs ¥ and C by numerical ones; since only 1r}equalm'cs maftt;r in
determining qualitative ouicomes, this makes things easier t.o 0 OS\;J
without losing anything. Taking V=2 and C=4, thereisamixed E
with P =1; the payoff matrix is

H D
H -1 2
D 0 L.

Suppose now that we introduce a third strategy, R er.‘Retahator’.
R behaves like a Dove against another Dove, but, if its opporller}t
escalates, R escalates also and acts like a Hawk. The payofl matrix is
shown in Table 2a. .

This more general version of the HawkaO\lJe game anci_, in
Particular, the stability of retaliation is treated in more detail m
Appendix E, which, ] hope, corrects some of the error.s T havemadein
earlier discussions of this problem. The game is discussed here (o
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Tabie 2. The Hawk-Dove--Retaliator game

4] b
N
H D R H D R
7 -1 2 H -1 2 -]
D6 D0 0.9
Ro=1 R—1 11 |

Hlustrate how games with more than two strategies can be analysed,
The matrix in Table 24 is awkward to analyse because, i the absence
of Hawk, D and R are identical, It is shown in Appendix E that the
only ESS is the mixed strategy, I=+H 41D,

The payofl matrix in Table 2% may be more realistic; it assumes
that, in a contest between D and R, the Retaliator does, at least
occasionally, discover that its opponent is unwiiling to escalate, and
takes advantage of this, so that, in D v. R contests, R does a little
better and D a little worse. It is casy Lo sec that R is now an ESS,
because E(R,R) is greater than either E(D,R) or E(H,R). Hence
neither 2 nor H, nor any mixture of the two, could invade an R
population. In general, ifanyentry on the diagonal of a payofT matrix
Is gredater than all other entries in the same column, then the
corresponding pure strategy is an ESS.

But is there any other ESS? In particular, what of I=3H11p?
Following the usual rules:

£

E(HI) = —3442
E(D.1) = 3041

i

and hence E(7,7)=1 Note that, as required of a mixed ESS,
EHI)=EWD.D.

ERI) = -4+ 111 x1 = 0.05.
The matrix in Table 26, then. has two ESS’s, I=iH+1Dand R A

population could evolve to either, depending on its initial compo-
sition.
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Figure 1. The Hawk-Dove Retaliator game. {a) Representation

i ation; k. & and r are the
ale of a polymorphic population; /.,
(fjf thee;t;tez of pErc , I and R respectively. (6} Flows for tdhg2
]—r[e--(g—R game given in Table 2. There are attractors at Ian

and a saddle point at S.

In picturing the dynamics of a game with thrlee pure (strat?gtleis[,lztai
convenient to plot the state of the popullatlon. as alupomd o e
equilateral triangle, and then to plot the traJector1e§ followe ! ); e
population, as in Figure 1. Of course, such 2 dllagram1 ca " hi)C
represent the frequencies of the three purle strategiesin 3 po‘yrkr)let \Eeen
population. In this case, however, theTe 152 corrf?spon edncteh pecen
the stable states of the polymorphic populatzon anh L,rc D
strategies when mixed strategies are posmb!e. Thus ; ere :Ll o e
stable states: pure R, and a polymorphism v&nth equal reqllg s
H and D, the latter corresponding to the mixed ESS, I=3 +2E.SS

A game with only two pure strategies always has at l'c-:astt ;;Z .
(Appendix B); butif there are three or more pure gtrgtegzei;l e
be no ESS. Consider, for example, the matrix in Table 3.

Table 3. The
Rock—Scissors—Paper game

R S P
—f 1 —1
—1 —& |

1 —1 —t

W
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describes the children’s game, ‘Rock—Scissors-Paper’ (R-8-P), with
the proviso that a smail payment ¢ be made by both players to the
bank if there is a draw. Il also represents any game with three
strategies, such that R beats S, S'beats Pand P beats R. [t js casy to
check that, for 2 positive, the mixed strategy /=3R+41S+1P is an
ESS. However, the genetically polymorphic population IRASAP s
unstable; this is an example of a discrepancy between the stability
criteria in the two cases.

Suppose that ¢ is small and negative; i.e. there is a smail positive
payoff for a draw. In this case there is no ESS, pure or mixed.
In the absence of an ESS, the population will cycle indefinitely,
P—S-R—P— ... I cannot decide whether there are intraspecific
contest situations likely to lead to such indefinite cycles; comparable
cycles, in asymmetric games, are discussed on p. 130 and Appendix J.

B A review of the assumptions

An infinite random-mixing population

If, as will commeonly be the case, individuals do not move far from
where they were born, this will alter the model in various ways.

First, opponents will have some degree of genetic relatedness. An
analysis of games between relatives is given in Appendix F. The
problem turns out to be far from straightforward. At a qualitative
level, however, the conclusion is the commonsense one, that animals
will behave in a more Dove-like and less Hawk-like manner.

Secondly, an individual may have a succession of contests against
the same opponent. If there is no learning from experience, this wii]
not alter the conclusions. If there is learning, then the ‘strategies’
which have to be considered when seekin gan ESS are no longer fixed
behaviour patterns, but ‘learning rules’; the evolution of learning
rules is discussed in Chapter 5.

Thirdly, it is possible that the population whose evolution is being
considered is not only finite but small. [f s0, the basic model must be
altered, because mutants cannot be very rare. Finite population
games have been considered by Riley (1978).

Asexual reproduction
Most species whose behaviour is of interest are sexual and diploid,
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hereas the model outlined above assumes asexual reproductu.m.
e discrepancy is unlikely to matter in practice. When re_:asomn‘g
T}? 1Sut, the function of some behavioural trait, some assump_tmr} must
. de about the range of phenotypes possible to the species; i.e. the
136 o set”. This may be based in part on knowledge of the range of
Stratigyariai;ili{y in the species or in related species and in part on
e Vrk or common sense. 1t is most unlikely to be baSt?d on a
guesst:?lge of the genetic basis of the behavioura.ll variability.
i”?l]q:’iforc a simple assumption of ‘like begets like’. 18 oftanrrézzz
sensible than a detailed assumption abou't the gene'tlc basis. :
where there seems no escape from detailed genetic hypotheses 1
i in Chapter 10, section D. .
dlsliuissiei;r\:vever,p important to be able Lo showj for smpfledrlnc])die;
situations, that the resolts of parthenogc?nes:s and oM ip 0rd
inheritance are similar. This is done for a‘partrcular case by gyga_te
Smith (1981), and in Chapter 4, section A, Bncﬂ}T, an in n1re
random-mating diploid population plays a game w1thhfxggsp(?e
strategies; P* represents the frequency of one strategy at_ tl e o an
P* is given by squation 2.7). The actua-Ll frequency with wA1 o
individual adopts that strategy is determined bty L\;fo alleles, 4 and a,
i Pyin A4, Aa and aa, respectively. . _
bellrting; l}:: ;I;‘z (i?e. no overdominance), then the populatxor}t xl\flll
evolve to the ESS provided P* lies between }.’U and Pp. If P* lies
outside that range, then obviously the population f:annot evolve ;lo
P*_ but it will become fixed for the homozygote lying closesF ‘Eo t'ﬁ
ES’S. If there is overdominance, things are more comﬂplex., butitis Sltl- ‘
true that the population will usually evolv.e to an ESS 1f th'e ge];wh:l
system permits, and otherwise approachejs it as closely asit ;‘-a,rgsssfor
(19815) has shown that a diploid population .WI_H evolvetot eh T
a wide range of genetic structures, although it is not true for the mo
ge?zr;]:s;‘zsl; as the number of loci, or numbe_r of a}le]es per locgss,
increases, it becomes more likely that a population will reach an E :
(Slatkin, 1979). If the ESS requires a range of phenotypcs, achll'levag::
only by a genetic polymorphism and not by a m1x.ed.stralteg3}11, then r;
genetic system may prevent the phenotypes ex15t11‘1g in the an '
Driate frequencies. As an example, the ESS for the wlar of at.trl io
discussed in the next chapter requires a phenotypic distribution
1
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which could not easily be generated by a polygenic system. Of course,
no difficulty arises if an individual can adopt a mixed strategy.

Symmetric and asymmetric contesis
The Hawk-Dove game analysed above is symmetrical. That is to say,
the two contestants start in identical situations: they have the same
choice of strategies and the same prospective payoffs. There may be a
difference in size or strength between them, which would influence the
outcome of an escalated contest, but if 50 it is not known to the
contestants and therefore cannot affect their choice of strategies,
Most actual contests, however, are asymmetric, They may be
between a male and & female, between an old and young, or a small
and large individual, or between the owner of a resource and a
non-owner. An asymmetry may be perceived beforehand by the
contestants; if o, it can and usually will influence the choice of action.
This is most obviously so if the asymmetry alters the payofls, or
affects the likely outcome of an escalated contest. Tt is equally true,
although less obvious, that an asymmetry which does not alter either
payoffs or success in escalation can determine the choice of action.

Table 4. The
Hawk-Dove—Bourgeois game

H D B
H ~1 2 0.5
D 0 1 0.5
B 05 1.5 1.0

Thus, consider a contest between the owner of & territory and an
intruder. In practice, the value of the territory may be greater to the
owner because of learnt local knowledge, and it is also possible that
ownership confers an advantage in an escalated contest. For
simplicity, however, I shall ignore thesc effects. Let us introduce into
the Hawk-Dove game a third sirategy, B or ‘Bourgeois’; i.c. “if
owner, play Hawk; if intruder, play Dove'. The payofl matrix is
shown in Table 4.

Note that it is always the case, when two B strategists meet, that
one is the owner and the other intruder. I have assumed in filling in
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the matrix that each strategy type is owne.r and inltruder unallyf
frequently. That is, genes determining behavu?u_r are mdep?.l ent o
the factors, genetic or environmental. determining F)\?rners 1p1. fs
Itis clear that Bis an ESS, and easy to check t%lat 1F is the ong

of this game. Thus an asymmetry of ownership will be uge [15 a
conventional one to settle the contest, lcven when 0w1llersh1p E;.‘ters
neither the payoffs nor success in ﬁghtlr}g. The same 1‘?: true o bar:}ylr
other asymmetry, provided it is unampxguously percenlv.ed by Q
contestants. Asymmetric contests are discussed in detail in Chapters

8-10.

Pairwise contests .
The Hawk-Dove model, and more com.pl'ex models expressed in
payofl matrix form, suppose that an individual engages in Of?? or
more pairwise contests; if more than one contest occurs, payo ls.dare
assumed to be combined additively. Such a. model can b§ applied to
agonistic encounters between pairs, or, in asymmc.lrlc form, to
contests between mates or between parent E‘md. Qﬁsprlpg. There are
many situations, however, in which an individual I, in cﬁ"ec;t.
competing not against an individual 9pponent but agamst] tbe
population as a whoie, or some section Ofl.t. Such casescan lgose y he
described as "playing the field’. Examples include the e-volutmn _of t E;"
sex tatio (Fisher, 1930; Shaw & Mohler, 1953: Hamulton, 1967‘),. 0
dispersal {Fretwell, 1972; Hamilton & May, ‘1977), Qf c01.npet1t10f1
between plants (since each plant competes against all its ne1ghb0f‘:1r‘s,
not against a single opponent}, and many other cxat_nples. In dcti
such contests against the field are probably more w1desprea§ an
important than pairwise contests; il therefore scems appropriate to
discuss them under a separate head.

C An extended model — playing the ficld

We can extend the concept of an "unbeatable strategyl’ (Hamilton.
1967) or an ‘evolutionarily stable strategy’, to cases in which the
payoff to an individual adopting a parliculgr st.ra%tegy depends, noton
the strategy adopted by one or a series of 1r}dmdu&1 opponents, bul
on some average property of the population as a whole, or some
section of it.
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Table 5. Fitness matrix for the extended
model

Population
I J
I W0 Wi
Mutant 7 WT) W)

How should an ESS be defined when individuals are playing the
field? This question has been treated by P. Hammerstein (personal
communication), and I have followed his proposal. Let the fitness of a
single A strategist in a population of B strategists be written W(4,8).
Clearly, 7 will be an ESS if, for all S £, W(J,1} < W(I,I). But what if
W(J.T)=W(I,I)? We then need that W(J) < W(I)ina population of
stralegists containing a small proportion ¢ of J strategists. We define
W(J,Py.p,1) as the fitness of a J strategist in a population P consisting
of ¢+ (1 —g)I. The conditions for I to be an ESS then are, for ail
J#]

either  WI(JI) < WD
or W(J.Iy = WD)
and, for small g,
W(LP,rr) < W(ILP,.1).

(2.9)

If only two strategies are possible, / and J, we can draw up the
fitness matrix in Table 3,

If W(J.1) < W(LI), then I is an ESS; if W(I.J)< W(J,J), then J is
an ESS. (f neither of these inequalities hold, then the ESS is a mixture
of fand J. It would be wrong though, to think that the proportions of
the two strategies at the ESS are necessarily given by equation (2.7).
This would be true only if the fitness of an individual 7in a population
consisting of a mixture /and J in proportion P to 1 — £ were given by
the linear sum PW(JI.1)+(1 — PYW(I,J), and thisis not necessarily so.

These points can best be illustrated by considering the simplest
form of the sex ratio game, in which a female can produce a totat of N
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Table 6. Fitness matrix for the sex ratio game

Population
§ o= 0.1 5y = 0.6
5 =01 18 0.967
Mutant 0 _ o6 58 0.8

offspring, in the ratio s males to (I —s) females. If we measure “fitness’
as expected number of grandchildren, then in a random-mating
population of sex ratio s”, we have

’

5

Wis,s) = Nz[l —S—H*(l SJ)1|,

and  W(5'.s) = 2N¥(1—5). (2.10)

If we then consider a population containing two types of female,
producing sex ratios s, = 0.1 and 5, =0.6, we have the fitness matrix in
Table 6.

It is apparent that neither s, nor s; is an ESS. If, without
justification, we were to calculate P from equation (2.7), we would
conclude, wrongly, that the stable state consisted of 1/25 of 5, and
24/25 of 5., giving a population sex ratio of 14.5/25=0.58. In fact, the
stable population sex ratio is 0.5.

Supposing that only these two kinds of females existed, the correct
way to find the ESS is as follows. Let § be the population sex ratio at
equilibrium.

Then  Wi(s1.§) = W(s:.8), or
1—0.14+0.1(1—8)/§ = 1—0.6+0.6(1 —5)3,

or §=10.5,
requiring
0.2514 0.852.

More generally, suppose individual females can produce any sex
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ratio between 0 and 1. We seek a sex ratio §*, which is an ESS in the
sense of being uninvadable by any mutant with ss£5% That is,
WAs™, s%) > W(s,s*) for s5% Provided that W is differentiable, we
can find s* from the condition

[EWs,s*)Es]y o v = 0. (2.14

Applying this condition to equation (2. 10) gives s*=0.5, as

expected. We can use equations (2.9) to check the stability of s* =0.5,
as follows:

Let 8 = gs+(1 —g)s*, where s £ s*,

Then from equation (2.10),

’

§

Wis,s') = Nﬁ[ =545 _S’)],

d - ’
M Wt = Nﬂ[l —.s*+s*(l—,”jl.
A

It is then easy to show that, for s#s*, the inequality
Wis,s") < W(s*,s') holds.

To summarise the extended model, a strategy 7 is an ESS provided
that equations (2.9) are satisfied. If, in a game with two pure
strategies, J and J, neither satisfies equations (2.9), the ESS will be a
mixed strategy; however, the relative frequencics of 7 and J at the
equilibrium cannot be found from equation (2.7), but must be
calculated from the equation (I, Pop)=W(J, Pop), where Pop
refers to the equilibrium population. I the strategy set is a continuous
variable (e.g. the sex ratio, varying continuously from 0 to 1}, the ESS
can be found from a condition similar to equation (2.1 1); its stability
must be checked by taking the second derivative, or in some other
way.

The crucial step in analysing cases in which an individual is playing
the field is to write down expressions corresponding to equation
(2.10}, giving the fitness of a rare mutant in a population of known
composition. In the particular case of equation (2. 10), the population
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is treated as infinite and without Structure.. This, however, is not a
necessary restriction. For example, Hamll‘ton (1967) sought the
unbeatable sex ratio, §*, when the offspring of k lfemales mate
randomly inter se. The problem redufse.s o ertmg down an
expression W(s,s*) for the fitness ofan ind1v1d}1a1 producmg se); ralic
s when in a groap with £— 1 females producing a sex ratio s*, and
then applying condition {2.11). In other words, given t-hat the otheur
fernales in the group produce the sex ratio s*, the best thing for the k%
female is to do likewise. . .

To give another example of a structured popu]anon,. consider
competition between plants or sessile animals growing ina pure
stand. We would seek a growth strategy I such that, if’ all the
neighbours of an individual were adopting /, the t{est strategy folr .thc
individnal is also I. Mirmirani & Oster (1978) considered competltlon
between annual plants which differed in the time at which they
switched tesources from growth to seed production. To find the
evolutionarily stable time, 7%, it would be necessary to find W(T,T"?,
the seed production of an individual switching at time 77 if
surrounded by individuals switching at time 7*, and then to solve the
equation [6W(T,T%)/¢ T}, =0. Note that it would not be necessary to
work out the fitness of individuals surrounded by a mixturc of types.

As a summary of the ideas in this chapter, it might be helpful to
read through the ‘Explanation of main terms’ on p. 204.



