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Risk-sensitivity:
crossroads for theories
of decision-making

Alex Kacelnik and Melissa Bateson

Most actions result in one of a set of possible outcomes. To understand how this
uncertainty, or risk, affects animals’ decision-making some researchers take a
_normative approach, asking how an animal should respond to risk if it is maximizing its
ﬂtmss Others focus on predicting responses to risk by generalizing from regularities in
b&hav:oural data, without reference to cognitive processes. Yet others infer cognitive
 processes from observed behaviour and ask what actions are predicted when these
,pfocesses interact with risk. The normative approach (Risk-sensitivity Theory: RST) is
unique in predicting a shift in a subject’s response to risk as a function of its resource
_budget, but the predictions of this theory are not yet widely confirmed. in fact,
-evidence suggests a strong bias towards risk-proneness when delay to reward is risky
and risk-aversion when amount of reward is risky, a pattern not readily explained by
RSI. Extensions of learning theory and of Scalar Expectancy Theory provide
‘pmcessmsed explanations for these findings but do not handle preference slwﬁ‘s or
‘pwwde; e 'oluﬁnnary justification for the processes assumed. In this reviaw we defend

Under natural circumstances, most actions have a set of
possible consequences, rather than a single well-defined
outcome. A choice is described as risky if the probabilities of
the different possible outomes are known, but the precise
outcome is not known. The best rthat an animal can do
when faced with a risky choice is to use information about
the probabilities of different outcomes to decide which ac-
tion to perform. For evolutionary biologists committed to
the study of decision-making in animals, this raises an in-

‘,' vity must be studned with theoretlcal plm'ality

triguing and challenging question: has natural selection pro-
duced sensitivity to risk, and if such an adaptation exists,
what form does it take? Posed in this form, the question of
risk-sensitivity belongs in the normative field of behavioural
ecology. However, recently it has become clear that a num-
ber of different fields of behavioural resecarch have con-
verged on the problem of how animals respond to risk, each
bringing a different perspective on how the behavioural
phenomena should be explained. Here, we review some of
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Fig. 1 The normative rationale of Risk-sensitivity Theory.
Fitness is shown as either (A) a decelerating or (B) an accelerat-
ing function of food gains. The choice is between two food
sources, one always giving x; food gains and the other giving
either a smaller amount, x,, or a larger amount, x,, with equal
probability. The average food gains of both food sources are
equal, but they differ in variance. In the upper panel the aver-
age fitness gains are higher for the fixed food source. In con-
trast, in the lower panel the opposite is true (modified from
Ref. 25).

these contributions under the categories of normative,
descriptive and process-based models.

Normative modelling; Risk-sensitivity Theory

Taking a normative approach implies establishing what an
actor ought to do if it wishes to achieve a goal. Because
natural selection must have played a significant role in the
evolution of decision systems, and because risk is ubiquitous
in nature, we might expect animals to be able to assess and
include risk in their decisions, and to behave as if they had
the goal of maximizing their darwinian fitness. Thus, there
are strong biological justifications for taking a normative
approach to risk-sensitivity.

This form of normative theorizing has important
heuristic virtues™®. The set of models that address how ani-
mals should respond to risk is known collectively as Risk-
sensitivity Theory (RST; for reviews see Refs 3, 6 and the
special issue of American Zoologist Vol. 36, September
1996). RST can be introduced by considering a subject
choosing between two actions which yield gains that differ
in both average magnirude and variance. The gains in what-
ever the actions produce (food, for instance) are not consid-
ered important in themselves, but because of their effects on
darwinian fitness. For presentation purposes, we consider
the case where the food gain from one option (fixed) has no
variance, while the alternative option (called either risky or
variable) yields either of two food gains with equal prob-
ability, If the fitness value of food gains of magnitude x fol-
lows a funcrion f(x), then to maximize expected fitness the
subject should prefer the fixed over the variable option
when the fitness gained from the fixed option is greater than
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the average of the two possible fitness gains from the vari-
able option. This can be expressed as follows:

f(xp)>%[f(xs>+f(x[)1 (1)

where the suffixes F, S and L indicate gains in the fixed op-
tion and the smaller and larger outcomes in the variable op-
tion, respectively. Notice that the equation is formulated for
two equiprobable outcomes in the variable option, but the
idea holds if the outcomes are weighted by different prob-
abilities or there are more than two possible outcomes in the
variable option.

Figure 1 shows that the inequality in Eqn 1 depends
upon the shape of f(x) as well as on the magnitude of the
outcomes and the probabilities of the outcomes. For the
particular case when the gain from the fixed option is equal
to the average gain from the variable option, that is,

1
Xp = E(xs +x,)

the inequality is true if f(x) is decelerated and is in the op-
posite direction when f(x) is accelerated (this property ap-
plies a result known as Jensen’s inequality). Thus, the sub-
ject should prefer the fixed outcome (be ‘risk-averse’) if
progressive increases in food gain give declining increases in
value (Fig. 1A), prefer the risky option (be ‘risk-prone’) if
progressive increases in food gain yield increasing increases
in value (Fig. 1B) and be indifferent if f(x) is a linear func-
tion (not shown). Clearly, the shape of the function relating
food gains to fitness, f(x), should have been crucial in deter-
mining the evolution of risk-sensitive decision-making. To
assess the relevance of RST today we need to know the form
taken by f(x) through evolutionary history. However, be-
cause the past relationship between food gains and fitness is
inaccessible to research, evolutionary biologists are forced to
use indirect approaches to discover the shape.

One possibility is to examine how food gains increase
fitness under present circumstances and assume that these
circumstances reflect those prevalent in evolutionary times.
While being theoretically possible, this approach is not easy
to implement because the time-scale of fitness measure-
ments tends to be much greater than that of foraging deci-
sions, making it very difficult to assign (with any accuracy)
differences in fitness to differences in foraging strategy.
Alternatively, the shape of the utility function by which the
animal attributes subjective value to resource gains can be
mapped experimentally. If it is assumed that the urility
function was shaped by selection to reflect consequences in
terms of darwinian fitness, then we can assume that the util-
ity function reflects the shape of f(x) accurately'’. Finally,
the problem can be reasoned around by speculating on the
most likely shape of the function. None of these three
strategies is capable of producing results that refute or con-
firm RST, but if any of these strategies suggests that f(x)
may have been non-linear then we gain confidence in the
rationale underlying RST.

Usually, evolutionary biologists take the third strategy of
predicting the shape of the function relating gains to fitness
on the basis of reasoning. The shape of f(x) is likely to depend
on the ‘energy budget’, or more generally, the resource bud-
get of the subject, which describes the relationship between
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the subject’s needs and the average gain it is currently re-
ceiving. If the subject is in a situation where the minimum
gain required to survive lies between x; and x;, then the
probability of survival when the food gains are xg or x; is
zero, and the function is discontinuous but accelerated
when evaluated at x5, x; and x;. If, instead, a survival thresh-
old lies between x; and x; and additional gains above this
threshold make licde difference to fitness, f(x) will be dis-
continuous but decelerated over the three possible values
of x. The ‘budget rule’?” summarizes the optimum decision
in each of these situations; it predicts risk-aversion when the
fixed (or least variable option) provides enough gains to
reach the critical threshold for survival and risk-proneness
when it does not. There are exceptions to the budget rule,
and fuller analyses can be found in more technical theo-
retical papers*. It should be noted that the budget rule may
be of limited generality because it is possible that over evo-
lutionary time organisms of a given species did not find
themselves in circumstances where the ability to switch risk-
preference gave a significant gain in fitness over persistently
being risk-averse or risk-prone. McNamara® explored this
issue and showed that while the ability to shift preference
would always be best, under many scenarios, risk-aversion
is almost as good, but inflexible risk-proneness can produce
major fitness losses. The implication of this analysis is that
if flexibility is not an option, then risk-aversion is best.

Thus, RST makes two main predictions. The first pre-
diction is that subjects ought to be ‘risk-sensitive’ in a weak
sense, namely, preferences should be affected by variance in
gains and not just by average gain. The second, and stronger
prediction is that preference should shift from risk-prone-
ness to risk-aversion in response to experimental manipu-
lations that change the shape of f(x) by altering the energy
budget of the subject. We label this as a strong prediction
because it is unique to RST. Evidence supporting this pre-
diction constitutes strong evidence in favour of RST, how-
ever, failure to find support for this prediction should not
be taken as evidence against RST because of the potential
lack of generality of the assumptions leading to it.

We looked for evidence for and against these predictions
in a review of 59 experimental studies of risk-sensitivity in
non-humans. We divided reports according to whether or not
they included manipulation of the subjects’ energy budgets
and also according to whether they used amount of gain or
the delay to get it to generate risk®. The results are shown in
Fig. 2. The main results are: (1) the majority of studies
found risk-sensitivity in the weak sense; (2) when risk was
effected through delay, animals were risk-prone and budget
manipulations had no effect; and (3) when risk was effected
through amount, there is a tendency towards risk-aversion,
and of the studies that manipulated budger, about one-third
found the switch in preference predicted by the budget rule.
Note that, although RST predicts that risk in amount and
delay should not be functionally equivalent’, the theory
does not predict the pattern of results that we found.

Descriptive models

The behaviourist school of experimental analysis of behaviour
prefers to make predictions by induction, generalizing from
observed data. The extra-empirical theorizing of the kind
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Fig. 2 The figures show the results of our survey of risk-
sensitivity experiments. They are based on data from 28
animal species including insects, fish, birds and mammals.
{A) Results from studies with no budget manipulations divided
according to whether variance was in amount of gain or delay
to gain. (B) Results from studies that manipulated budget,
again divided according to whether variance was in amount or
delay. ‘Switch’ indicates that the subjects switched from being
risk-averse to risk-prone, according to the predictions of RST.
‘Some effect’ indicates that there was a shift in preference in
the predicted direction but it was not statistically reliable. ‘No
effect’ indicates that manipulations of budget did not change
the direction or degree of preference (modified from Ref. 25).

described in the previous section goes against this spirit. Ob-
served regularities in behavioural data are used to generate
‘Laws’ of behaviour (such as the influential Matching Law)!*!!
which in turn are used to generate predictions about how an
animal will behave in so far unstudied circumstances. Such
models are defended for their descriptive performance and
not for their evolutionary or cognitive basis.

In the case of risk-sensitivity, behavioural analysts have
studied the effects of variance in delay on choice with
greater assiduity than the effects of variance in amount.
They found that the following expression gives a good index
of reinforcing value and, consequently, choice'%:

A

- 2
1+ kd @

where A is proportional to reward amount, 4 is the delay to
food and £ is a parameter that is greater than zero. The
essence of Eqn 2 is that value increases linearly with food
amount and declines hyperbolically with delay. To apply
Eqn 2 to risk-sensitivity, one needs to assume that an action
yields a variable amount or delay and then postulate an av-
eraging rule to compute the average value resulting from
choosing the variable option. One possible averaging rule
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for an action with several outcomes is to calculate the mean
across these outcomes and then apply Eqn 2 to the resulting
mean amount or delay. An alternative is to apply Eqn 2 to
each outcome and then calculate the mean of the resulting
values. Because Eqn 2 is linear in amount and hyperbolic in
delay, it does not make any difference which averaging rule
is chosen when dealing with variable amounts, but it does
when dealing with variable delays. If delays are averaged
first and Eqn 2 is applied to the mean delay then reward
sources are valued according to the mean of their outcomes,
regardless of variance, but if the second rule is used, then a
more variable food source has greater mean value than a
fixed one with the same mean delay.

Thus, this approach predicts neutrality to variance in
amount and either neutrality (first averaging rule) or risk-
proneness (second averaging rule) when variability is in delay.
There is no a priori reason to prefer one averaging rule over
the other. If overall rate of reinforcement was paramount,
then the first rule would be expected'?. However, the second

rule fits the data more closely'*'¢

, as can be seen from Fig. 2A.

Given that Eqn 2 is derived from data, it is hardly sur-
prising that its predictive performance is good, but for the
same reasons we feel that this research programme offers

lirele explanatory power.

Process-based model 1: associative learning

Neither the normative nor the descriptive models described
above make any effort to suggest how behaviour might be
implemented by a plausible information-processing system.
In contrast, this is precisely the goal of the models we have
placed in this section and the next. These process-based
models contain hypotheses about how individuals process
information using ‘cognitive’ entities, such as associations
berween stimuli or representation of past experience. The
model described in this section focuses on the processes by
which the experimental subject acquires information about
the options on offer.

Subjects in risk-sensitivity experiments are trained to
assign significance to available alternatives in the same way
as those in psychological studies of conditioning. They are
exposed repeatedly to initially neutral stimuli (conditional
stimuli; CS), followed by meaningful events (unconditional
stimuli; US), such as food. In a typical risk experiment
two CSs are used: one paired with a fixed outcome and the
other paired with a probabilistic variable outcome. During
testing, previously trained animals choose between the two
CSs. Normative modellers ignore training because they
make the assumption that natural selection has equipped
animals to acquire the information they need in order to
behave adaptively. However, learning cannot be instan-
taneous because, in the case of a variable option, a subject
will have to experience it many times in order to extract the
probabilities of the different outcomes. Thus, the rules by
which the subjects learn what is associated with the different
CSs may have some role in explaining the choices they make
when presented with a pair of CSs. Specifically, we assume
that the factors which promote learning about a CS will also
promote preference for that CS in a choice test®.

The shape of the functions relating amount and delay
to learning is a lively topic'” but, overall, learning perfor-
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Fig. 3 A simple model showing how associative learning can produce risk-sensitiv-
ity when variance is in delay. (A) Shows a putative process for attributing value to a pre-
viously neutral stimulus (conditioned stimulus; CS) that is paired to a meaningful event (un-
conditioned stimulus; US) after a fixed delay f. The idea is that occurrence of the CS leaves a
trace that decays non-linearly with time. When the US is experienced the CS gains a value Af
proportional to the state of its trace. (B) Uses the same model for a CS paired to a US that
occurs half the times after a shorter delay and half the times after a longer delay, with mean
f. In this case, the average change in the value of the CS is Av. The S associated with the
variable delay should be preferred over the CS associated with the fixed delay because after
similar amounts of exposure to the two options the CS associated with the variable delay
will have a higher value. To account for the effects of variability in amount, this model needs
to assume that the CS gains value as an increasing, decelerated function of magnitude of the
US (modified from Ref, 25).

mance is an increasing function of amount of reward and a
decreasing function of delay between CS and US. Crucially,
with respect to risk, neither of these two functions is linear.
Increases in amount or delay of a fixed outcome provoke
marginally decreasing changes in learning. To apply these
ideas to training using stimuli with variable outcomes,
again, we are faced with the problem of postulating an
averaging rule, but now the learning process suggests a clear
preference between averaging algorithms. The fundamental
importance of the US in learning provides a justification
for attributing value first and then computing averages.
This makes sense because value should be gained by the
CS each time a US is experienced (the control of learning
by the US can be extended to extinction by postulating
that the CS loses value when an expected US does not
occur).

Given the non-linear effects of amount and delay, and
the hypothetical averaging rule driven by the US, Jensen’s
inequality results in our predicting better learning perfor-
mance for fixed than for variable amounts, but becter learn-
ing performance for variable than for fixed delays. Figure 3
illustrates the latter case. These predictions are derived from
learning functions with single outcomes, and the accuracy
of the predictions for variable outcomes is not yet proven
empirically, but as it stands, the model correctly predicts
risk-aversion when amounts are variable and risk-proneness
when delays are variable.
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Fig. 4 Reboreda and Kacelnik’'s model for the effect of Weber's Law on risk sensi-
tivity®. (A,B) Represent the experienced distribution of outcomes (these may be either delays
or amounts) in (A) a fixed and (B) a variable option. {C,D) Represent the distributions that
are assumed to be formed in memory as a result of the above experiences. Note the skew in
the distribution of the memory for the variable option that results from the differing ac-
curacy with which the smaller and larger outcomes are represented. If choices result from
comparing random samples from the two memory distributions, then in a majority of cases
the sample from the symmetrical distribution will be larger. In the case of a choice between
a fixed and variable food amount, this leads to risk-aversion, and in the case of a choice be-
tween a fixed and variable delay it leads to risk-proneness (reproduced from Ref. 14).

Process-based model 2: extending Scalar Expectancy
Theory

So far, the models that we have described all assume that
amounts and delays are perceived accurately and remembered
without error. In this section we investigate the consequences

Questions for future research

« Strong risk-sensitivity is crucial for Risk-sensitivity Theory (RST) but is
supported by weak evidence. Do the shifts in risk-preference for both
amount and delay predicted by RST really occur? Perhaps smaller species,
or species from harsher environments, are more likely to have evolved
strong risk-sensitivity. Are there reliable differences in which species
show the shifts?

« So far, we have not distinguished between different types of variability,
however, this distinction is crucial: RST applies to variable outcomes that
are also unpredictable (or risky), whereas the other models we discuss
make similar predictions for both predictable (for example, alternation
of good and bad outcomes) and unpredictable variance. Is risk-sensitivity
controlled by the stochasticity of outcomes as assumed by RST or do
animals treat predictable variability in the same way? Worryingly, our
first stab at this issue?* favours the latter.

» Is classical conditioning with food rewards of variable magnitude less
effective than conditioning with fixed rewards of the same mean size?
And is conditioning with a variable CS-US delay more effective than with
a fixed delay of the same mean duration? Both of these predictions
follow from the associative learning model of risk-sensitivity® but they
have not been tested empirically.

« Can the extension of Scalar Expectancy Theory to food amounts'+2
predict quantitative details of preferences?

« Finally, and more generally, can we devise a satisfactory epistemological
framework to incorporate the contributions of cognitive science into
normative models of behaviour?

of assuming a particular type of perceptual error. In its classical
form, Weber's Law implies that bigger differences are re-
quired to discriminate stimuli of greater magnirude. Scalar

18,19

Expectancy Theory (SE accounts for this phenomenon
in the measurement of time intervals by assuming that time
intervals are remembered with an accuracy proportional to
their length. This assumption is supported by data from
experiments in which subjects reproduce time intervals by
showing an increase in food-related behaviour towards the
typical time at which food is received. Timing shows a drop
in absolute, but not relative, accuracy with the magnitude of
the interval being timed. Specifically, in SET John Gibbon
and collaborators®?! have postulated that when a subject stores
the magnitude of a fixed interval in its reference memory it
forms a bell-shaped probability density function with mean
and standard deviation proportional to the magnirude of
the interval. If a stimulus is associated with more than one
interval, what is stored in reference memory is the sum of as
many bell-shaped functions as there are intervals, each one
with an area proportional to the relative frequency of that of
the time interval being represented?®’.

Reboreda and Kacelnik extended the approach of Gibbon
to the memory for food amounts?? and claimed that SET
might have a bearing on risk-sensitivity for both amounts
and delays. Experimentally mapping the shape of the cognitive
representation of food amounts is more difficult than for
time intervals because there is no straightforward equivalent
of a reproduction task. However, using discrimination
tasks, it is possible to show that Weber’s Law does apply to
the perception of the size of fixed rewards'“* and the
underlying representation of amounts could, therefore, be
similar to the assumptions that SET makes for times. The
description of the model that follows is assumed to apply to
both amount and time.

According to the summation principle described above,
the representation of an option with a variable outcome is
skewed to the right because of the greater variance in the
representation of the larger elements, whereas that of an op-
tion with a fixed outcome is symmetrical (Fig. 4). To apply
these ideas to risk, we assume that the subject chooses be-
tween options by comparing random samples from the
memory representations of the options. If two options have
the same mean (amount or delay) but one has a fixed and
the other a variable outcome, then the positive skew in the
representation of the variable option implies that in more
than half of the comparisons the variable option will yield a
smaller sample than the fixed one. This process accounts for
risk-proneness when delays are variable’’, and it extends
naturally to predict risk-aversion when amounts are variable,
because foraging animals prefer larger food amounts and
shorter delays. The appeal of this model is derived from its
economy: the same assumptions about the shape of cogni-
tive representations account for the contrasting effects of
delay and amount variability, a simplicity that none of the
other models achieves.

Conclusions

We began this review by claiming that the problem of risk is
likely to be ubiquitous in the evolution of animal decision
systems, and went on to describe four areas of behavioural
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research, each of which addresses the problem of how risk
affects decision making. The four theories we describe need
not compete directly with each other because they address
different questions: RST addresses the fitness consequences
of choosing more or less risky options, the descriptive
model seeks an algorithm that best describes the available
data and the process-based theories address the cognitive
mechanisms that underlie risk-sensitivity. We do not believe
that any of these approaches substitutes for any other; all can
contribute to a full understanding of risk-sensitivity. How-
ever, while theories offering vatious levels of explanation
can co-exist, they should not exist in isolation, and should
not ignore empirical findings from other fields of research.
To date, the different approaches to risk-sensitivity have
focused on explaining different aspects of the data and,
consequently, they do not come together to form a single
coherent explanation.

RST is unique in predicting shifts in preference with
subjects’ resource budgets (something we have called strong
risk-sensitivity), but the evidence for these shifts is not yet
conclusive, coming from a few studies and few species. If
strong risk-sensitivity is confirmed, then the descriptive and
process-based theories will have to be modified accordingly.
By the same token, it seems necessary to adjust RST to cope
with the dramatic difference in the effects of variability in
amount and delay which the process-based theories explain
easily. RST does show that variability in these two attributes
has different fitness implications, but the behavioural pre-
dictions are so qualitative that experimental findings make
little or no impact on the theory itself. As claimed by one of
the best normative modellers working on risk: ‘these models
are better for thinking than for testing’. However, greater
responsiveness to the results of empirical testing would do
liccle harm.
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