1. Histories are sequences $n = (x_1, x_2), (x_1, x_2), \ldots, (x_1, x_2)$ of pairs of proposals in [0, 1], where x_i represents player is proposal at period s of how much player I should receive and $x_1^s \neq x_2^s$ for $s < t$. The finite terminal histories are those $h = ((x_1^1, x_2^1), (x_1^1, x_2^1), \ldots, (x_1^t, x_2^t))$ with $x_1 = x_2, u_1(n) = o^T x_1$ and $u_2(n) = o^T (1-x_1)$. The infinite histories are terminal histories h where there is no agreement and $u_i(h) = 0$ for $i = 1, 2$.

Any outcome (x^*, t) representing agreement about outcome x^- at period t is a SPE outcome of this game ($t=\infty$ corresponds to disagreement). The following strategies constitute a SPE leading to (x_-,t) :

Player 1: In all periods $s < t$, propose $x_1^s = 1$. In all periods $s \geq t$, propose $x_1^s = x^s$. *Player 2*: In all periods $s < t$, propose $x_2^s = 0$. In all periods $s \geq t$, propose $x_2^s = x^*$.

2. Let $x^* = (1,0), y^* = (1-c_1, c_1), 0 < c_1 < 1, c_1 < c_2$ and $u_i(D) = -\infty$ for $i = 1,2$. Consider the strategies

Player 1: Always offer x^* , accept an offer y if and only if $y_1 \ge y_1^* = 1 - c_1$.

Flayer \mathcal{Z} *:* Always offer y , accept all offers.

Step - The above strategies form ^a SPE-

Optimality for player in in a subgame after militing player is exclude player in good from the submum possible payon of 1 by offering x , so her strategy is optimal. Now consider a subgame after which player 2 offers $y \in X$. Maximum possible that player 1 can get by rejecting is $1-c_1$, so if $y_1 \geq 1-c_1$ then it is optimal for her to accept. On the other hand if $y_1 < 1-c_1$, rejecting now and onering x -next period yields her a payon of $1-c_1$, which is the maximum that she can get by using any other strategy that rejects now and strictly greater than what she can get by accepting now-

Optimality for player 2: Consider a subgame after which player 1 offers $x \in X$. Accepting gives player 2 a payoff of $x_2 \geq 2$, whereas if player 2 employs a strategy that rejects x now, then given player T is strategy. $c_1 - c_2$ is the maximum possible that player 2 can get if the strategy reads to agreement in the next period, $0 = 2c_2$ is what player 2 gets if the strategy reads to agreement two periods from now, $c_1 = 3c_2$ is the maximum possible that player 2 can get if the strategy leads to agreement three periods from now, $0 = 4c_2$ is what player 2 gets if the strategy leads to agreement four periods from now; ...; $-\infty$ is what player 2 gets if the

strategy never leads to agreement-dimensional now the maximum possible player \mathbb{R}^n get is

$$
max\{c_1-c_2, 0-2c_2, c_1-3c_2, 0-4c_2, \ldots, -\infty\}=c_1-c_2<0.
$$

Therefore accepting x now is an optimal reply for player 2.

Now consider a subgame after which player \bm{z} offers. Offering y -how gives player \bm{z} a payon of y_2 whereas if player 2 uses a strategy that oners y with $y_2 > y_2$, this leads to rejection by player 1 and the most that player 2 can get given player 1's strategy is

$$
max\{0-c_2, c_1-2c_2, 0-3c_2, c_1-4c_2, \ldots, -\infty\} = -c_2 < 0
$$

by arguments similar to above. So onering y -is optimal for player \mathfrak{z} .

S . Inc S is payons are unique.

Let if J is a construction permutation of the subgame whose version of α denote the subgame where ρ and ρ i is the recover to oereigned \cdots and \cdots and \cdots is indicated the supremum spectrum \approx \cdots \cdots in \cdots respectively- Then

$$
(a) \quad m_i \ge 1 - \max\{M_i - c_j, 0\}
$$

and

(b)
$$
M_i \leq max \{1 - max \{m_j - c_j, 0\}, 1 - m_j - c_i\} \leq 1 - (m_j - c_j)
$$

Assume that $M_2 \ge c_2$, then $m_1 \ge 1 - (M_2 - c_2)$ by $(a.i = 1)$ and $M_2 \le 1 - (m_1 - c_1)$ by $\begin{bmatrix} 0 & \cdots & -1 \end{bmatrix}$, which is equal to compute the contract of $\begin{bmatrix} 0 & \cdots & -1 \end{bmatrix}$ and $\begin{bmatrix} 0 & \cdots & -1 \end{bmatrix}$ $m_2 \geq 1 - (1 - c_1) = c_1$ and by $(b.i = 2), M_2 \leq 1 - (1 - c_1) = c_1$ so $m_2 = M_2 = c_1$. S is another S is an S is S is an S is S is a set of S is a set

 $\frac{1}{2}$ accepts any oner because her continuation payon if she rejects is $c_1 - c_2 < 0$. So it can only be optimal for player 1 to offer x . Similarly if player 1 rejects, then her continuation payon is $1 - c_1$, so she would accept any y with $y_1 > 1 - c_1$ and reject any y with $y_1 < 1 - c_1$. It is not optimal for player 2 to offer x that will be rejected by player 1, because in that case her continuation payon is no more than $-c_2 \times 0$. It is also not optimal for player 2 to oner g with $y_1 > 1 - c_1$, so player z offers y and player I accepts.

ally the second that the continuous continuous continuous-term that the complete the continuous continuous compl and Rubinstein-

4. Assume that $\delta_i, \delta \in (0,1)$ and $u_i \geq 0$. Note that $\delta^{t-1} = (\delta_i^{t-1})^{\lfloor n \delta_i \rfloor}$ and $\frac{\partial \overline{u} \delta_i}{\partial x_i}$ and define $v_i(x) =$ u*u*ix *u* $\frac{u\bar{h}\delta_{i}}{\ln\delta_{i}}$. Then $v_{i}(x)\delta^{t-1}_{i} = (u_{i}(x)\delta^{t-1}_{i})^{\frac{u}{\ln\delta_{i}}}$ is a monotonic transformation of $u_{i}(x)\delta^{t-1}_{i}$ and therefore represents the same time preference over $X \times T$.

, we consider the continuous of continuous continuous α are continuous continuous continuous continuous continuous $u_1(0) = u_2(1) = 0$ and let $u_2 \circ u_1$: $[0, u_1(1)] \to [0, u_2(0)]$ be concave. Let z^* maximize $u_1(z)u_2(z)$ over all $z \in X$ and for each $\delta \in (0,1)$, let x^*_δ, y^*_δ solve:

$$
\delta u_1(x^*_\delta) = u_1(y^*_\delta) \qquad \delta u_2(y^*_\delta) = u_2(x^*_\delta).
$$

 $\liminf y_\delta \leq x_\delta$ and $u_1(x_\delta)u_2(x_\delta) = u_1(y_\delta)u_2(y_\delta)$.

We will next show that $y^*_\delta \leq z^* \leq x^*_\delta$. Suppose not, wlog let $z^* \lt y^*_\delta \lt x^*_\delta$. Then $u_1(z) < u_1(y_\delta) < u_1(x_\delta)$ and $u_2(z) > u_2(y_\delta) > u_2(x_\delta)$, i.e.:

$$
u_1(z^*) = (1 + \gamma_\delta)u_1(y^*_\delta) - \gamma_\delta u_1(x^*_\delta), \qquad \text{where} \quad \gamma_\delta = \frac{u_1(y^*_\delta) - u_1(z^*)}{u_1(x^*_\delta) - u_1(y^*_\delta)} \in (0, 1).
$$

So

$$
u_2(z^*) \le (1+\gamma_\delta)u_2(y^*_\delta)-\gamma_\delta u_2(x^*_\delta).
$$

by concavity of $u_2 \circ u_1$. Then:

$$
u_1(z^*)u_2(z^*) \le (1+\gamma_\delta)^2 u_1(y_\delta^*)u_2(y_\delta^*) + \gamma_\delta^2 u_1(x_\delta^*)u_2(x_\delta^*) - \gamma_\delta(1+\gamma_\delta)[u_1(y_\delta^*)u_2(x_\delta^*) + u_2(y_\delta^*)u_1(x_\delta^*)]
$$

$$
< (1+\gamma_\delta)^2 u_1(y_\delta^*)u_2(y_\delta^*) + \gamma_\delta^2 u_1(x_\delta^*)u_2(x_\delta^*) - \gamma_\delta(1+\gamma_\delta)[u_1(x_\delta^*)u_2(x_\delta^*) + u_1(y_\delta^*)u_2(y_\delta^*)] = u_1(x_\delta^*)u_2(x_\delta^*)
$$

where the second inequality follows from $u_1(y_\delta^*)u_2(x_\delta^*) + u_2(y_\delta^*)u_1(x_\delta^*) = u_1(x_\delta^*)u_2(x_\delta^*) +$

 $u_1(y_\delta)u_2(y_\delta)+u_1(x_\delta)-u_1(y_\delta)||u_2(y_\delta)-u_2(x_\delta)|\geq u_1(x_\delta)u_2(x_\delta)+u_1(y_\delta)u_2(y_\delta)$ and the last equality follows from $u_1(x_\delta)u_2(x_\delta) = u_1(y_\delta)u_2(y_\delta)$, a contradiction.

So $\delta u_1(x^*_{\delta}) = u_1(y^*_{\delta}) \leq u_1(z^*) \leq u_1(x^*_{\delta}),$ i.e. $u_1(x^*_{\delta}) \to u_1(z^*)$ as $\delta \to 1$. Since u_1 is strictly increasing and continuous we conclude that $x_\delta^* \to z^*$ as $\delta \to 1.$

. In the following a district μ and the following permutation of all averages to them the contract μ unique SPE of model 5, i offers $\frac{1-i}{1-i_1i_2}$ to herself and $\frac{1+i}{1-i_1i_2}$ to j and i accepts an offer x if and only if $x_i \geq \frac{\sigma_i (1 - \sigma_j)}{1 - \delta_1 \delta_2}$.

For the latter, concavity of u_1 and u_2 is sufficient but not necessary (e.g. let $u_1(x) = \sqrt{x}$ and $u_2(x) =$ $e^{\frac{1}{2}(1-x)}-1$, then u_2 is not concave but $u_2 \circ u_1^{-1}$ is).

Consider a change in the model where now each player can opt out when responding to an oner. So we only add niftle terminal histories $n = (x^2, N, x^2, N, \ldots, x^2, Out)$ with $u_i(n) = a_i \delta_i$ - to the original model. Everything else (including the player function) is the same- same-over as and done that each player prefers here pay on the unique SPE of the original model to opting out, i.e. $d_i^* < \frac{d_i^* - d_i}{1 - \delta_1 \delta_2}$ for $i = 1, 2$.

It is straightforward to verify that the above SPE continues to be an SPE in the new model $\mathbf{L} = \mathbf{L}$ model where p is the rst to oer let \mathbb{R} is in multiple is in multiple is in multiple is in multiple is in \mathbb{R} $S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$

$$
(a) \quad m_i \geq 1 - max\{\delta_j M_j, d_j^*\} \geq 1 - \delta_j M_j
$$

where the second inequality follows from $a_i < a_j \frac{1-\delta_1\delta_2}{1-\delta_1\delta_2} \leq$ $\frac{1-\delta_i}{1-\delta_1\delta_2} \leq \delta_j M_j$. Similarly:

$$
M_i \leq max \left\{1 - max\{d_j^*, \delta_j m_j\}, \delta_i(1 - m_j)\right\}
$$

where $m_j \geq 1 - \delta_i M_i$ by (a), so $\delta_i (1 - m_j) \leq \delta_i^2 M_i$. Since $M_i > 0$ and $\delta_i \in (0,1)$ the above inequality is equivalent to

(b)
$$
M_i \leq 1 - max\{d_j^*, \delta_j m_j\} \leq 1 - \delta_j m_j
$$
.

Then (a) and (b) imply that $m_i = M_i = \frac{1}{1-\delta_1\delta_2}$ for $i = 1,2$. Standard arguments show that the unique SPE strategies in the new game are the same as in the original one-

. The these that $\mathbf{v} = \mathbf{v}$ are not time consistent are not time the second consistent are not time as \mathbf{v} $\beta\delta < \alpha < \delta$: at period 1, the agent prefers receiving 1 at period 3 to receiving α at period 2 but at period \mathbf{r}_1 and periods receiving at at period \mathbf{r}_2 at period \mathbf{r}_1 and \mathbf{r}_2 are the set of \mathbf{r}_2 preferences of the agent over terminal histories is not well dened- One way to analyze such time preferences is to perfect player i as a dimensional agent at each period. Then the new set α of agents is $\{(i,t): i = 1,2, t = 1,2,...\}, U_{(i,t)}(x,t) = v_i(x), U_{(i,t)}(x,s) = v_i(x)\beta\delta^{s-t}$ if $s > t$ and Ui-tx s otherwise- It is easy to check that the old SPE for i continues to be an SPE in the modified game.